Publisher
Florida Atlantic University
Description
It was not until the 20th century that combinatorial design theory was studied as a formal subject. This field has many applications, for example in statistical experimental design, coding theory, authentication codes, and cryptography. Major approaches to the problem of discovering new t-designs rely on (i) the construction of large sets of t designs, (ii) using prescribed automorphism groups, (iii) recursive construction methods. In 2017 and 2018, Tran Van Trung introduced new recursive techniques to construct t – (v, k, λ) designs. These methods are of purely combinatorial nature and require using "ingredient" t-designs or resolutions whose parameters satisfy a system of non-linear equations. Even after restricting the range of parameters in this new method, the task is computationally intractable. In this work, we enhance Tran Van Trung's "Basic Construction" by a robust and efficient hybrid computational apparatus which enables us to construct hundreds of thousands of new t – (v, k, Λ) designs from previously known ingredient designs. Towards the end of the dissertation we also create a new family of 2-resolutions, which will be infinite if there are infinitely many Sophie Germain primes.
Person Preferred Name
Lopez, Oscar A.
author
Graduate College
Title Plain
An Algorithmic Approach to Tran Van Trung's Basic Recursive Construction of t-Designs
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Physical Location
Florida Atlantic University Libraries
Title
An Algorithmic Approach to Tran Van Trung's Basic Recursive Construction of t-Designs
Other Title Info
An Algorithmic Approach to Tran Van Trung's Basic Recursive Construction of t-Designs