Computer-aided diagnosis of skin cancers using dermatology images

File
Publisher
Florida Atlantic University
Date Issued
2023
EDTF Date Created
2023
Description
Skin cancer is a prevalent cancer that significantly contributes to global mortality rates. Early detection is crucial for a high survival rate. Dermatologists primarily rely on visual inspection to diagnose skin cancers, but this method is inaccurate. Deep learning algorithms can enhance the diagnostic accuracy of skin cancers. However, these algorithms require substantial labeled data for effective training. Acquiring annotated data for skin cancer classification is time-consuming, expensive, and necessitates expert annotation. Moreover, skin cancer datasets often suffer from imbalanced data distribution.
Generative Adversarial Networks (GANs) can be used to overcome the challenges of data scarcity and lack of labels by automatically generating skin cancer images. However, training and testing data from different distributions can introduce domain shift and bias, impacting the model’s performance. This dissertation addresses this issue by developing deep learning-based domain adaptation models.
Additionally, this research emphasizes deploying deep learning models on hardware to enable real-time skin cancer detection, facilitating accurate diagnoses by dermatologists. Deploying conventional deep learning algorithms on hardware is not preferred due to the problem of high resource consumption. Therefore, this dissertation presents spiking neural network-based (SNN) models designed specifically for hardware implementation. SNNs are preferred for their power-efficient behavior and suitability for hardware deployment.
Note

Includes bibliography.

Language
Type
Extent
140 p.
Identifier
FA00014233
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2023.
FAU Electronic Theses and Dissertations Collection
Date Backup
2023
Date Created Backup
2023
Date Text
2023
Date Created (EDTF)
2023
Date Issued (EDTF)
2023
Extension


FAU

IID
FA00014233
Person Preferred Name

Gilani, Syed Qasim

author

Graduate College
Physical Description

application/pdf
140 p.
Title Plain
Computer-aided diagnosis of skin cancers using dermatology images
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2023
2023
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
Computer-aided diagnosis of skin cancers using dermatology images
Other Title Info

Computer-aided diagnosis of skin cancers using dermatology images