αB-crystallin is a small heat-shock chaperone protein (sHSP) required for the homeostasis of multiple tissues including eye lens, retina, heart and brain. Correspondingly, mutation or altered levels of αB-crystallin are associated with multiple degenerative diseases including cataract, retinal degeneration, cardiomyopathy and Lewy body disease. Based on its wide-ranging importance understanding the protective and homeostatic properties of α B-crystallin is critical for understanding degenerative diseases and could lead to the development of therapies to treat these diseases. αB-crystallin is localized to the mitochondria suggesting a direct effect on mitochondrial function. My thesis work has examined those molecular pathways required for translocation of αB-crystallin to the mitochondria and to identify the downstream pathways controlled by mitochondrial translocation of αB-crystallin that could be important for cellular protection and differentiation. My results point to a novel role of αB-crystallin in regulation of key apoptotic pathways that mediate the balance between cell survival and differentiation.