Publisher
Florida Atlantic University
Description
Achieving a consensus among a large number of nodes has always been a challenge for any decentralized system. Consensus algorithms are the building blocks for any decentralized network that is susceptible to malicious activities from authorized and unauthorized nodes. Proof-of-Work is one of the first modern approaches to achieve at least a 51% consensus, and ever since many new consensus algorithms have been introduced with different approaches of consensus achievement. These decentralized systems, also called blockchain systems, have been implemented in many applications such as supply chains, medical industry, and authentication. However, it is mostly used as a cryptocurrency foundation for token exchange. For these systems to operate properly, they are required to be robust, scalable, and secure. This dissertation provides a different approach of using consensus algorithms for allowing information sharing among nodes in a secured fashion while maintaining the security and immutability of the consensus algorithm. The consensus algorithm proposed in this dissertation utilizes a trust parameter to enforce cooperation, i.e., a trust value is assigned to each node and it is monitored to prevent malicious activities over time. This dissertation also proposes a new solution, named localized consensus, as a method that allows nodes in small groups to achieve consensus on information that is only relevant to that small group of nodes, thus reducing the bandwidth of the system. The proposed models can be practical solutions for immense and highly dynamic environments with validation through trust and reputation values. Application for such localized consensus can be communication among autonomous vehicles where traffic data is relevant to only a small group of vehicles and not the entirety of the system.
Rights
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Person Preferred Name
Zamir, Linir
author
Graduate College
Title Plain
DECENTRALIZED SYSTEMS FOR INFORMATION SHARING IN DYNAMIC ENVIRONMENT USING LOCALIZED CONSENSUS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Title
DECENTRALIZED SYSTEMS FOR INFORMATION SHARING IN DYNAMIC ENVIRONMENT USING LOCALIZED CONSENSUS
Other Title Info
DECENTRALIZED SYSTEMS FOR INFORMATION SHARING IN DYNAMIC ENVIRONMENT USING LOCALIZED CONSENSUS