Deep Learning for Android Application Ransomware Detection

File
Publisher
Florida Atlantic University
Date Issued
2018
EDTF Date Created
2018
Description
Smartphones and mobile tablets are rapidly growing, and very important nowadays. The most popular mobile operating system since 2012 has been Android. Android is an open source platform that allows developers to take full advantage of both the operating system and the applications itself. However, due to the open source community of an Android platform, some Android developers took advantage of this and created countless malicious applications such as Trojan, Malware, and Ransomware. All which are currently hidden in a large number of benign apps in official Android markets, such as Google PlayStore, and Amazon. Ransomware is a malware that once infected the victim’s device. It will encrypt files, unlock device system, and display a popup message which asks the victim to pay ransom in order to unlock their device or system which may include medical devices that connect through the internet. In this research, we propose to combine permission and API calls, then use Deep Learning techniques to detect ransomware apps from the Android market. Permissions setting and API calls are extracted from each app file by using a python library called AndroGuard. We are using Permissions and API call features to characterize each application, which can identify which application has potential to be ransomware or is benign. We implement our Android Ransomware Detection framework based on Keras, which uses MLP with back-propagation and a supervised algorithm. We used our method with experiments based on real-world applications with over 2000 benign applications and 1000 ransomware applications. The dataset came from ARGUS’s lab [1] which validated algorithm performance and selected the best architecture for the multi-layer perceptron (MLP) by trained our dataset with 6 various of MLP structures. Our experiments and validations show that the MLPs have over 3 hidden layers with medium sized of neurons achieved good results on both accuracy and AUC score of 98%. The worst score is approximately 45% to 60% and are from MLPs that have 2 hidden layers with large number of neurons.
Note

Includes bibliography.

Language
Type
Extent
79 p.
Identifier
FA00013151
Additional Information
Includes bibliography.
Thesis (M.S.)--Florida Atlantic University, 2018.
FAU Electronic Theses and Dissertations Collection
Date Backup
2018
Date Created Backup
2018
Date Text
2018
Date Created (EDTF)
2018
Date Issued (EDTF)
2018
Extension


FAU

IID
FA00013151
Person Preferred Name

Wongsupa, Panupong

author

Graduate College
Physical Description

application/pdf
79 p.
Title Plain
Deep Learning for Android Application Ransomware Detection
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2018
2018
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Deep Learning for Android Application Ransomware Detection
Other Title Info

Deep Learning for Android Application Ransomware Detection