AN EFFECTIVE ENSEMBLE LEARNING-BASED REAL-TIME INTRUSION DETECTION SCHEME FOR IN-VEHICLE NETWORK

File
Publisher
Florida Atlantic University
Date Issued
2023
EDTF Date Created
2023
Description
Connectivity and automation have expanded with the development of autonomous vehicle technology. One of several automotive serial protocols that can be used in a wide range of vehicles is the controller area network (CAN). The growing functionality and connectivity of modern vehicles make them more vulnerable to cyberattacks aimed at vehicular networks. The CAN bus protocol is vulnerable to numerous attacks as it lacks security mechanisms by design. It is crucial to design intrusion detection systems (IDS) with high accuracy to detect attacks on the CAN bus. In this dissertation, to address all these concerns, we design an effective machine learning-based IDS scheme for binary classification that utilizes eight supervised ML algorithms, along with ensemble classifiers, to detect normal and abnormal activities in the CAN bus. Moreover, we design an effective ensemble learning-based IDS scheme for detecting and classifying DoS, fuzzing, replay, and spoofing attacks. These are common CAN bus attacks that can threaten the safety of a vehicle’s driver, passengers, and pedestrians. For this purpose, we utilize supervised machine learning in combination with ensemble methods. Ensemble learning aims to achieve better classification results through the use of different classifiers that are combined into a single classifier. Furthermore, in the pursuit of real-time attack detection and classification, we use the Kappa architecture for efficient data processing, enhancing the IDS’s accuracy and effectiveness. We build this system using the most recent CAN intrusion dataset provided by the IEEE DataPort. We carried out the performance evaluation of the proposed system in terms of accuracy, precision, recall, F1-score, and area under curve receiver operator characteristic (ROC-AUC). For the binary classification, the ensemble classifiers outperformed the individual supervised ML classifiers and improved the effectiveness of the classifier. For detecting and classifying CAN bus attacks, the ensemble learning methods resulted in a robust and accurate multiclassification IDS for common CAN bus attacks. The stacking ensemble method outperformed other recently proposed methods, achieving the highest performance. For the real-time attack detection and classification, the ensemble methods significantly enhance the accuracy the real-time CAN bus attack detection and classification. By combining the strengths of multiple models, the stacking ensemble technique outperformed individual supervised models and other ensembles.
Note

Includes bibliography.

Language
Type
Extent
102 p.
Identifier
FA00014298
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2023.
FAU Electronic Theses and Dissertations Collection
Date Backup
2023
Date Created Backup
2023
Date Text
2023
Date Created (EDTF)
2023
Date Issued (EDTF)
2023
Extension


FAU

IID
FA00014298
Person Preferred Name

Alalwany, Easa

author

Graduate College
Physical Description

application/pdf
102 p.
Title Plain
AN EFFECTIVE ENSEMBLE LEARNING-BASED REAL-TIME INTRUSION DETECTION SCHEME FOR IN-VEHICLE NETWORK
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2023
2023
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
AN EFFECTIVE ENSEMBLE LEARNING-BASED REAL-TIME INTRUSION DETECTION SCHEME FOR IN-VEHICLE NETWORK
Other Title Info

AN EFFECTIVE ENSEMBLE LEARNING-BASED REAL-TIME INTRUSION DETECTION SCHEME FOR IN-VEHICLE NETWORK