EXPLAINABLE GRAPH LEARNING FOR POWER GRID FAULT DETECTION

File
Publisher
Florida Atlantic University
Date Issued
2024
EDTF Date Created
2024
Description
Short-circuit faults can cause significant damage to power grid infrastructure, resulting in costly maintenance for utility providers. Rapid identification of fault locations can help mitigate these damages and associated expenses. Recent studies have demonstrated that graph neural network (GNN) models, using phasor data from various points in a power grid, can accurately locate fault events by accounting for the grid’s topology—a feature not typically leveraged by other machine learning methods. However, despite their high performance, GNN models are often viewed as ”black-box” systems, making their decision logic difficult to interpret. This thesis demonstrates that explanation methods can be applied to GNN models to enhance their transparency by clarifying the reasoning behind fault location predictions. By systematically benchmarking several explanation techniques for a GNN model trained for fault location detection, we assess and recommend the most effective methods for elucidating fault detection predictions in power grid systems.
Note

Includes bibliography.

Language
Type
Extent
84 p.
Identifier
FA00014528
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Thesis (MS)--Florida Atlantic University, 2024.
FAU Electronic Theses and Dissertations Collection
Date Backup
2024
Date Created Backup
2024
Date Text
2024
Date Created (EDTF)
2024
Date Issued (EDTF)
2024
Extension


FAU

IID
FA00014528
Person Preferred Name

Bosso, Richard George

author

Graduate College
Physical Description

application/pdf
84 p.
Title Plain
EXPLAINABLE GRAPH LEARNING FOR POWER GRID FAULT DETECTION
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2024
2024
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
EXPLAINABLE GRAPH LEARNING FOR POWER GRID FAULT DETECTION
Other Title Info

EXPLAINABLE GRAPH LEARNING FOR POWER GRID FAULT DETECTION