EXPLORING UNDULATORY SWIMMING BEHAVIORS WITH DEEP REINFORCEMENT LEARNING

File
Publisher
Florida Atlantic University
Date Issued
2024
EDTF Date Created
2024
Description
The capability to navigate in the proximity of solid surfaces while avoiding collision and maintaining high efficiency is essential for the effective design and operation of underwater vehicles. The underlying capability involves a variety of challenges, and a potential approach to overcome such obstacles is to rely on biomimetic or bio-inspired design. Through evolution, organisms have developed methods of locomotion optimized for their specific environment. One of the common forms of locomotion found in underwater organisms is undulatory swimming. These undulatory swimmers display different swimming behaviors based on the flow conditions in their environment. These behaviors take advantage of changes in the flow field caused by the presence of obstructions and obstacles upstream or adjacent to the swimmer. For example, a free swimmer in near-proximity to a flat plane can experience changes in lift and drag during locomotion. The reduced drag can benefit the swimmer, however, changes in lift may lead to a collision with obstacles. Despite the abundance of qualitative data from observing these undulatory swimmers, there is a lack of quantitative data, creating a disconnect in understanding how these organisms have evolved to exploit the presence of walls and obstacles. By employing a combination of traditional computational fluid dynamics and novel neural network-based techniques it is possible to emulate the evolution of learned behavior in biological organisms. The current work uses deep reinforcement learning coupled with two-dimensional numerical simulations of self-propelled swimmers to better understand behavior observed in nature.
Note

Includes bibliography.

Language
Type
Extent
72 P.
Identifier
FA00014402
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Thesis (MS)--Florida Atlantic University, 2024.
FAU Electronic Theses and Dissertations Collection
Date Backup
2024
Date Created Backup
2024
Date Text
2024
Date Created (EDTF)
2024
Date Issued (EDTF)
2024
Extension


FAU

IID
FA00014402
Person Preferred Name

Alvaro, Alejandro

author

Graduate College
Physical Description

application/pdf
72 P.
Title Plain
EXPLORING UNDULATORY SWIMMING BEHAVIORS WITH DEEP REINFORCEMENT LEARNING
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2024
2024
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
EXPLORING UNDULATORY SWIMMING BEHAVIORS WITH DEEP REINFORCEMENT LEARNING
Other Title Info

EXPLORING UNDULATORY SWIMMING BEHAVIORS WITH DEEP REINFORCEMENT LEARNING