The expression and analysis of a lysine-rich wound-response protein in tomato plants.

File
Publisher
Florida Atlantic University
Date Issued
2016
EDTF Date Created
2016
Description
Understanding the genetic regulation of the response to wounding and wound
healing in fruiting plants is imperative to maintaining agricultural sustainability,
preserving the quality of food supplies, and ensuring the economic viability of
agriculture. Many genes are known to be induced by wounding, providing both structural
repair and defense. The KED gene in tobacco (Nicotiana tabacum) has been shown to be
induced by wounding. We have identified its homologue gene in tomato (Solanum
lycopersicum) that we named SlKED. We have analyzed gene expression pattern of
SlKED through tomato growth and development and in response to wounding as well as
hormonal and inhibitor treatments. We found that the plant hormone ethylene played a
major role in the expression of SlKED. To further identify evidence for physiological and
transductional functions of KED and SlKED, the tobacco KED gene was introduced to
tomato and overexpressed by the fruit tissue-active PUN1 promoter from pepper
(Capsicum annuum,). The expression of this gene was compared to the expression of the native SlKED gene and other known wound response genes in both the wild-type and
transgenic tomato plants. The upregulation of the native SlKED gene by wounding was
significantly muted in the tobacco KED-expressing transgenic plants. The expression of
other genes known to be associated with wound response transduction pathways was also
altered. Our studies implicate the KED gene in defense mechanisms for mechanical stress
in tomato plants.
Note

Includes bibliography.

Language
Type
Extent
37 p.
Identifier
FA00004773
Additional Information
Includes bibliography.
Thesis (M.S.)--Florida Atlantic University, 2016.
FAU Electronic Theses and Dissertations Collection
Date Backup
2016
Date Created Backup
2016
Date Text
2016
Date Created (EDTF)
2016
Date Issued (EDTF)
2016
Extension


FAU

IID
FA00004773
Organizations
Person Preferred Name

Kaplan, Noah

author

Graduate College
Physical Description

application/pdf
37 p.
Title Plain
The expression and analysis of a lysine-rich wound-response protein in tomato plants.
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2016
2016
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
The expression and analysis of a lysine-rich wound-response protein in tomato plants.
Other Title Info

The expression and analysis of a lysine-rich wound-response protein in tomato plants.