Influences of Climate variability on Rainfall Extremes of Different Durations

File
Publisher
Florida Atlantic University
Date Issued
2016
EDTF Date Created
2016
Description
The concept of Intensity Duration Frequency (IDF) relationship curve presents crucial design contribution for several decades under the assumption of a stationary climate, the frequency and intensity of extreme rainfall nonetheless seemingly increase worldwide. Based on the research conducted in recent years, the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flash floods. The trend analysis of the precipitation influencing the climate variability and extreme rainfall in the state of Florida is conducted in this study. Since these local changes are potentially or directly related to the surrounding oceanic-atmospheric oscillations, the following oscillations are analyzed or highlighted in this study: Atlantic Multi-Decadal Oscillation (AMO), El Niño Southern Oscillation (ENSO), and Pacific Decadal Oscillations (PDO). Collected throughout the state of Florida, the precipitation data from rainfall gages are grouped and analyzed based on type of duration such as short-term duration or minute, in hourly and in daily period. To assess statistical associations based on the ranks of the data, the non-parametric tests Kendall’s tau and Spearman’s rho correlation coefficient are used to determine the orientation of the trend and ultimately utilize the testing results to determine the statistical significance of the analyzed data. The outcome of the latter confirms with confidence whether there is an increasing or decreasing trend in precipitation depth in the State of Florida. The main emphasis is on the influence of rainfall extremes of short-term duration over a period of about 50 years. Results from both Spearman and Mann-Kendall tests show that the greatest percentage of increase occurs during the short rainfall duration period. The result highlights a tendency of increasing trends in three different regions, two of which are more into the central and peninsula region of Florida and one in the continental region. Given its topography and the nature of its water surface such as the everglades and the Lake Okeechobee, Florida experience a wide range of weather patterns resulting in frequent flooding during wet season and drought in the dry season.
Note

Includes bibliography.

Language
Type
Extent
212 p.
Identifier
FA00004787
Additional Information
Includes bibliography.
Thesis (M.S.)--Florida Atlantic University, 2016.
FAU Electronic Theses and Dissertations Collection
Date Backup
2016
Date Created Backup
2016
Date Text
2016
Date Created (EDTF)
2016
Date Issued (EDTF)
2016
Extension


FAU

IID
FA00004787
Person Preferred Name

Metellus, Wilord

author

Graduate College
Physical Description

application/pdf
212 p.
Title Plain
Influences of Climate variability on Rainfall Extremes of Different Durations
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2016
2016
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Influences of Climate variability on Rainfall Extremes of Different Durations
Other Title Info

Influences of Climate variability on Rainfall Extremes of Different Durations