INVESTIGATING THE NEURAL CIRCUITRY SUPPORTING OBJECT RECOGNITION MEMORY IN C57BL/6J MICE

File
Publisher
Florida Atlantic University
Date Issued
2020
EDTF Date Created
2020
Description
The hippocampus, a brain region that is part of the limbic system in the medial temporal lobe, is critical to episodic memory, or the memory of autobiographical events. The hippocampus plays an important role in the consolidation of information from short-term memory into more permanent long-term memory and spatial memory which enables navigation. Hippocampal damage in humans has been linked to memory loss, such as in Alzheimer’s disease and other dementias, as well as in amnesia such as in the case of patient H.M. The role of the hippocampus has been well characterized in humans but is less understood in rodents due to contradictory findings. While rodents have served well as model organisms in developing our understanding of the cognitive map that is critical for spatial navigation, there has been substantial contention over the degree to which the rodent hippocampus supports non-spatial memory, specifically the memory for items or objects previously encountered. The overall objective of this research is to gain a better understanding of how neuronal circuits involving the hippocampus and perirhinal cortex function to support object memory in the brain. Chemogenetic technologies such as DREADDs (designer receptor exclusively activated by designer drugs) have proven to be effective tools in remote manipulation of neuronal activity. First, a series of behavioral tasks was used to validate the effects of DREADD inactivation in the CA1 region of dorsal hippocampus in C57BL/6J male mice. DREADD inhibition resulted in significant impairment in the spontaneous object recognition (SOR) task and of spatial memory in the Morris water maze. In conjunction, mice were implanted with bilateral perirhinal cortex guide cannulae to allow for temporary muscimol inactivation during distinct time points in the SOR task to further investigate the nature of its relationship with the hippocampus. The results reveal an unexpected role for the perirhinal cortex in the retrieval of strong object memory. Finally, Arc mRNA expression was quantified in CA1 of dorsal hippocampus and perirhinal cortex following both weak and strong object memory formation. The results indicate that the perirhinal cortex and hippocampus have distinct, yet complementary roles in object recognition memory and that distinction is gated by memory strength. Understanding the neural mechanisms supporting the weak-strong object memory distinction in mice is an important step not only in validating mice as a suitable model system to study episodic memory in humans, but also in developing treatments and understanding the underlying causes of diseases affecting long-term memory such as Alzheimer’s disease.
Note

Includes bibliography.

Language
Type
Extent
140 p.
Identifier
FA00013571
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2020.
FAU Electronic Theses and Dissertations Collection
Date Backup
2020
Date Created Backup
2020
Date Text
2020
Date Created (EDTF)
2020
Date Issued (EDTF)
2020
Extension


FAU

IID
FA00013571
Organizations
Person Preferred Name

Cinalli Jr., David A

author

Graduate College
Physical Description

online resource
140 p.
Title Plain
INVESTIGATING THE NEURAL CIRCUITRY SUPPORTING OBJECT RECOGNITION MEMORY IN C57BL/6J MICE
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2020
2020
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
INVESTIGATING THE NEURAL CIRCUITRY SUPPORTING OBJECT RECOGNITION MEMORY IN C57BL/6J MICE
Other Title Info

INVESTIGATING THE NEURAL CIRCUITRY SUPPORTING OBJECT RECOGNITION MEMORY IN C57BL/6J MICE