In this work, we develop an extension of the generalized Fourier transform for exterior domains due to T. Ikebe and A. Ramm for all dimensions n>2 to study the Laplacian, and fractional Laplacian operators in such a domain. Using the harmonic extension approach due to L. Caffarelli and L. Silvestre, we can obtain a localized version of the operator, so that it is precisely the square root of the Laplacian as a self-adjoint operator in L2 with DIrichlet boundary conditions. In turn, this allowed us to obtain a maximum principle for solutions of the dissipative two-dimensional quasi-geostrophic equation the exterior domain, which we apply to prove decay results using an adaptation of the Fourier Splitting method of M.E. Schonbek.