Looking Into the Deep: Investigating Micro- and Nanoscale Biomineral Architecture of Marine Organisms Using Advanced Characterization Techniques

File
Publisher
Florida Atlantic University
Date Issued
2024
EDTF Date Created
2024
Description
Living organisms synthesize and assemble complex bioinorganic composites with enhanced structure and properties to fulfill needs such as structural support and enhanced mechanical function. With the advent of advanced materials characterization techniques, these biomineral systems can be explored with high resolution to glean information on their composition, ultrastructure, assembly, and biomechanics. In this work, the endoskeletal features of two marine organisms are explored.
Acantharia are geographically widespread marine planktonic single-celled organisms. Their star-shaped SrSO4 endoskeleton consists of spicules emanating from a central junction, arranged to satisfy crystallochemical and spatial requirements of their orthorhombic crystal lattice. In this work, synchrotron X-ray nanotomography and deep-learning guided image segmentation methods were used to characterize the endoskeleton of 5 types of Acantharia and to extrapolate their growth mechanism. The results highlight the diverse morphology of the spicules and spicular junctions that Acantharia achieve whilst maintaining overall spatial arrangement. Fine structural features, such as interspicular interstices thought to play a role in the robustness of the overall endoskeleton, were resolved.
Note

Includes bibliography.

Language
Type
Extent
215 p.
Identifier
FA00014526
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2024.
FAU Electronic Theses and Dissertations Collection
Date Backup
2024
Date Created Backup
2024
Date Text
2024
Date Created (EDTF)
2024
Date Issued (EDTF)
2024
Extension


FAU

IID
FA00014526
Person Preferred Name

Raja, Dawn May Somu

author

Graduate College
Physical Description

application/pdf
215 p.
Title Plain
Looking Into the Deep: Investigating Micro- and Nanoscale Biomineral Architecture of Marine Organisms Using Advanced Characterization Techniques
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2024
2024
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
Looking Into the Deep: Investigating Micro- and Nanoscale Biomineral Architecture of Marine Organisms Using Advanced Characterization Techniques
Other Title Info

Looking Into the Deep: Investigating Micro- and Nanoscale Biomineral Architecture of Marine Organisms Using Advanced Characterization Techniques