Classical trajectory molecular dynamics methods are used to investigate open ended free standing single wall carbon nanotubes ("SWT"). Total energy calculations performed using classical three-body interatomic potentials with periodic boundary conditions along the tube axis, showed that the minimum strain energy varied as 1/$R\sp2$ relative to an unstrained graphite sheet. We discuss the development of a parallel code to simulate short-ranged empirical potentials such as those of Stillinger and Weber, Tersoff, and Tersoff-Brenner. We then use the Tersoff and Tersoff-Brenner potentials to examine SWT and the tube response to axial stretching and compression. Data collected are used to calculate Young's modulus for the tubes and to develop a simple formula that approximates Young's modulus over a range of tube radii. The investigation of the free standing SWT leads to a suggestion for the possible mechanism responsible for holding the tubes open during the growth process.