PHOSPHORUS SEQUESTRATION AND BIOREMEDIATION: PHOSPHORUS-31 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

File
Publisher
Florida Atlantic University
Date Issued
2020
EDTF Date Created
2020
Description
Eutrophication is an increase in primary plant nutrients (Nitrogen [N] and Phosphorus [P]) in oceans, estuaries and lakes. The consequences of eutrophication are harmful algal blooms (HABs), resulting in algal toxin production and the depletion of oxygen as the extensive biomass decays. P is often the limiting nutrient and is viewed as a significant environmental problem. Most of the excess P that enters aquatic ecosystems originates from anthropogenic sources such as fertilizers, sewage, animal wastes, compost, crop residues, and wastewater. Over time, one of the main reservoirs of P becomes organic P (Po). We investigated the chemical nature and dynamics of P in cyanobacteria, horse manure, stormwater treatment areas, and rice fields. To better understand the chemical nature of P, the identification of specific P compounds was required, which was achieved through 31P nuclear magnetic resonance (NMR) spectroscopy. We investigated how paramagnetic metals and quadrupolar nuclei cause severe line broadening, peak shifts, and decreased the signal to noise ratio. Results revealed that certain Po forms are readily bioavailable to Microcystis aeruginosa. Additionally, the potential heterotrophic use of the organic portion (e.g., glucose, glycerol) of these P compounds are indicated for the growth and persistence of Microcystis aeruginosa. We showed that the cultivation of rice (Oryza sativa L.) had been found to effectively reduce P from agrarian soil and water through plant uptake and, therefore, minimizing downstream eutrophication. Soil, water, sugarcane, and rice plants at two different stages were analyzed for twelve different elements. Finally, we examined how a “relic” agrarian ditch in Stormwater Treatment Area 1 East (STA-1E) can be used for the retention and sequestration of P and other nutrients. The STAs were established to capture P from agricultural and other sources before reaching the Everglades. Retained P is primarily stored in the wetland soils and sediments, generated through a collection of interrelated physical, chemical, and biological processes.
Note

Includes bibliography.

Language
Type
Extent
197 p.
Identifier
FA00013594
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2020.
FAU Electronic Theses and Dissertations Collection
Date Backup
2020
Date Created Backup
2020
Date Text
2020
Date Created (EDTF)
2020
Date Issued (EDTF)
2020
Extension


FAU

IID
FA00013594
Person Preferred Name

Duersch, Bobby G.

author

Graduate College
Physical Description

application/pdf
197 p.
Title Plain
PHOSPHORUS SEQUESTRATION AND BIOREMEDIATION: PHOSPHORUS-31 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2020
2020
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
PHOSPHORUS SEQUESTRATION AND BIOREMEDIATION: PHOSPHORUS-31 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
Other Title Info

PHOSPHORUS SEQUESTRATION AND BIOREMEDIATION: PHOSPHORUS-31 NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY