Response of secondary systems to seismic excitation

File
Publisher
Florida Atlantic University
Date Issued
1988
Description
In this dissertation the response of secondary systems to seismic excitation is investigated. A secondary system is a piece of equipment or a lighter appendage to a more massive primary structure which receives external excitations indirectly through its host structure. Assumption of linear behavior for both primary and secondary system is made in most parts in the analysis. Parametric excitations due to vertical ground motion and hysteretic behavior of the primary system under severe loading are treated in two separate chapters. A general procedure is first developed to formulate the system of equations for a combined primary-secondary linear system in which secondary systems are attached to a primary system at an arbitrary number of locations. Successive chapters are devoted to studying the effects of different factors on the behavior of a particular type of the combined system; namely, a multi-story primary structure supporting a secondary equipment, idealized as a single-degree-of-freedom linear oscillator. We list the following major findings of this study: (1) The two approximation procedures to calculate the response of a secondary system to seismic excitations developed in this dissertation are accurate and efficient, and can be applied to light or moderately heavy equipments. (2) Parametric studies suggest that greater amplification occurs as an equipment is tuned to lower building modes. (3) The equipment response is sensitive to the equipment mass, damping in the building, and the location of the equipment. (4) Soil compliancy can affect equipment response significantly. A greater number of modes should be employed when soil-structure interaction effects are important. (5) Protective devices between the equipment and the supporting floor of a building can reduce the equipment response by an order of magnitude. In this dissertation we consider cushioning devices constructed of linear, viscoelastic materials. (6) Vertical ground motion and gravity effect can both increase equipment response. (7) If a building is forced into the nonlinear regime due to intense seismic excitations, the equipment response can be quite sensitive to the parameters of the nonlinear model.
Note

College of Engineering and Computer Science

Language
Type
Extent
246 p.
Identifier
11915
Additional Information
College of Engineering and Computer Science
FAU Electronic Theses and Dissertations Collection
Thesis (Ph.D.)--Florida Atlantic University, 1988.
Date Backup
1988
Date Text
1988
Date Issued (EDTF)
1988
Extension


FAU
FAU
admin_unit="FAU01", ingest_id="ing1508", creator="staff:fcllz", creation_date="2007-07-18 19:10:49", modified_by="staff:fcllz", modification_date="2011-01-06 13:08:32"

IID
FADT11915
Issuance
monographic
Person Preferred Name

HoLung, Joseph Anthony.
Graduate College
Physical Description

246 p.
application/pdf
Title Plain
Response of secondary systems to seismic excitation
Use and Reproduction
Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

1988
monographic

Boca Raton, Fla.

Florida Atlantic University
Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Response of secondary systems to seismic excitation
Other Title Info

Response of secondary systems to seismic excitation