Research presented in this dissertation has the central aim of applying a novel method of source localization called beamforming to neuromagnetic recordings for characterizing dynamic spatiotemporal activity of sensorimotor brain processes in subjects during rhythmic auditory stimulation, self-paced movement, and two sensorimotor coordination (synchronization and syncopation) tasks known to differentiate on the basis of behavioral stability. Each experimental condition was performed at different rates resulting in 26 experimental runs per subject. Event-related neural responses were recorded with a whole-head MEG system and characterized in terms of their phase-locked (evoked) and non-phase-locked (induced) activity within the brain using both whole-brain analysis and region of interest (ROI) analysis. The analysis of the auditory conditions revealed that neural activity within extraauditory areas throughout the brain, including sensorimotor cortex, is modulated by rhythmic auditory stimulation. Additionally, the temporal profile of this activity was markedly different between sensorimotor and auditory cortex, possibly revealing different physiological processes, entrained within a common network for representing isochronic auditory events. During self-paced movements cycle-by-cycle dynamics of induced neural activity was measured and consistent neuro-modulation in the form of event-related desynchronization (ERD) and synchronization (ERS) was observed at all rates investigated (0.25 - 1.75Hz). ERD and ERS modulations exhibited dynamic scaling properties on a cycle-by-cycle basis that depended on the period of movement. Activity in the beta- and mu-bands also exhibited patterns of phase locking between sensorimotor locations. Phase locking patterns exhibited abrupt decreases with increases in movement rate.