STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS

File
Publisher
Florida Atlantic University
Date Issued
2024
EDTF Date Created
2024
Description
The rise of Advanced Driver-Assistance Systems (ADAS) and Autonomous Vehicles (AVs) emphasizes the urgent need to combat distracted driving. This study introduces a fresh approach for improved detection of distracted drivers, combining a pre-trained Convolutional Neural Network (CNN) with a Bidirectional Long Short- Term Memory (BiLSTM) network. Our analysis utilizes both spatial and temporal features to examine a broad array of driver distractions. We demonstrate the advantage of this CNN-BiLSTM framework over conventional methods, achieving significant precision (up to 98.97%) on the combined ’Union Dataset,’ merging the Kaggle State Farm Dataset and AUC Distracted Driver Dataset (AUC-DDD). This research enhances safety in autonomous vehicles by providing a solid and flexible solution for everyday use. Our results mark considerable progress in accurately identifying driver distractions, pushing the boundaries of safety technology in AVs.
Note

Includes bibliography.

Language
Type
Extent
89 p.
Identifier
FA00014418
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Thesis (MS)--Florida Atlantic University, 2024.
FAU Electronic Theses and Dissertations Collection
Date Backup
2024
Date Created Backup
2024
Date Text
2024
Date Created (EDTF)
2024
Date Issued (EDTF)
2024
Extension


FAU

IID
FA00014418
Person Preferred Name

Qu, Fangming

author

Graduate College
Physical Description

application/pdf
89 p.
Title Plain
STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2024
2024
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS
Other Title Info

STUDY AND ANALYSIS OF MACHINE LEARNING TECHNIQUES FOR DETECTION OF DISTRACTED DRIVERS