A UNIFIED SOFT SENSING FRAMEWORK FOR COMPLEX DYNAMICAL SYSTEMS

File
Contributors
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
In the past few years, the development of complex dynamical networks or systems has stimulated great interest in the study of the principles and mechanisms underlying the Internet of things (IoT). IoT is envisioned as an intelligent network infrastructure with a vast number of ubiquitous smart devices present in diverse application domains and have already improved many aspects of daily life. Many overtly futuristic IoT applications acquire data gathered via distributed sensors that can be uniquely identified, localized, and communicated with, i.e., the support of sensor networks. Soft-sensing models are in demand to support IoT applications to achieve the maximal exploitation of transforming the information of measurements into more useful knowledge, which plays essential roles in condition monitoring, quality prediction, smooth control, and many other essential aspects of complex dynamical systems. This in turn calls for innovative soft-sensing models that account for scalability, heterogeneity, adaptivity, and robustness to unpredictable uncertainties. The advent of big data, the advantages of ever-evolving deep learning (DL) techniques (where models use multiple layers to extract multi-levels of feature representations progressively), as well as ever-increasing processing power in hardware, has triggered a proliferation of research that applies DL to soft-sensing models. However, many critical questions need to be further investigated in the deep learning-based soft-sensing.
Note

Includes bibliography.

Language
Type
Extent
205 p.
Identifier
FA00013993
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00013993
Person Preferred Name

Huang, Yu

author

Graduate College
Physical Description

application/pdf
205 p.
Title Plain
A UNIFIED SOFT SENSING FRAMEWORK FOR COMPLEX DYNAMICAL SYSTEMS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
A UNIFIED SOFT SENSING FRAMEWORK FOR COMPLEX DYNAMICAL SYSTEMS
Other Title Info

A UNIFIED SOFT SENSING FRAMEWORK FOR COMPLEX DYNAMICAL SYSTEMS