Publisher
Florida Atlantic University
Description
Synthetic fiber reinforced concrete sample sets were exposed to two different environments. One set, of six samples, was exposed to filtered seawater in the lab with wet and dry cycles, while the other set of samples was exposed, on a barge, to the marine environment, in the intracoastal waterways, at SeaTech. The samples were exposed for 8 months, and then removed for experimental and mechanical testing. Upon removal, the barge samples were photographed to observe surface organisms that were attached to each sample. The barge samples, after cleaning, were then exposed to UV light to observe surface bacteria. The barge samples were also taken to Harbor Branch facility for DNA testing, and then sent in for sequencing. This sequencing was used to identify the organisms that were present inside the concrete samples. An Indirect Tensile Strength Test, IDT, was performed on both sets of samples to observe the first crack, max load, and fracture toughness of each sample. The Barge samples had a lower first crack, max load, and fracture toughness, which means that it took less force to break these samples, than the Seawater samples. As the fiber content increased, the Seawater samples grew stronger, while the Barge samples grew weaker. Also, as the fiber content increased, the biodiversity found on the surface of the Barge samples increased as well.
Person Preferred Name
Parkinson, Jacqueline Cecile
author
Graduate College
Title Plain
Microbial Induced Degradation in Synthetic Fiber Reinforced Concrete Samples in South Florida
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Physical Location
Florida Atlantic University Libraries
Title
Microbial Induced Degradation in Synthetic Fiber Reinforced Concrete Samples in South Florida
Other Title Info
Microbial Induced Degradation in Synthetic Fiber Reinforced Concrete Samples in South Florida