Unraveling the molecular mechanism of human polynucleotide phosphorylase (hPNPase) in controlling oxidized RNA

File
Publisher
Florida Atlantic University
Date Issued
2019
EDTF Date Created
2019
Description
Oxidation by reactive oxygen species is the major source of RNA damaging insult in living organisms. Increased RNA oxidation has been strongly implicated in a wide range of human diseases; predominantly neurodegeneration. Oxidized RNA should be removed from the cellular system to prevent their deleterious effect to the cells and organisms. In eukaryotic cells, mitochondria are the major intracellular sources of ROS and may cause greater damage to the mitochondrial RNA. In this study, we first investigated the RNA oxidation, by measuring the level of 8-hydroxy-Guanosine (8-oxo-Guo), inside mitochondria and cytoplasm in cultured human cells. We discovered that the mitochondrial 8-oxo-Guo is higher than its cytoplasmic counterparts under both normal growth and oxidative stress condition. Next, we explored the role of human polynucleotide phosphorylase (hPNPase) in controlling RNA oxidation inside mitochondria and cytoplasm. hPNPase binds to oxidized RNA with higher affinity, reduces the 8-oxo-Guo level in total RNA and protects cells against oxidative stress. In this study, the molecular mechanism of hPNPase in 8-oxo-Guo reduction was investigated. First, the effect of hPNPase activities on the 8-oxo-Guo level in mitochondria and cytoplasm was examined. The knockdown of hPNPase increased both the mitochondrial and cytoplasmic 8-oxo-Guo, whereas overexpression had the opposite effect. Second, our study revealed that hSUV3, an RNA helicase that forms a functional complex with hPNPase in mitochondria, was dispensable in reducing 8-oxo-Guo levels.
Note

Includes bibliography.

Language
Type
Extent
159 p.
Identifier
FA00013392
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2019.
FAU Electronic Theses and Dissertations Collection
Date Backup
2019
Date Created Backup
2019
Date Text
2019
Date Created (EDTF)
2019
Date Issued (EDTF)
2019
Extension


FAU

IID
FA00013392
Organizations
Person Preferred Name

Malla, Sulochan

author

Graduate College
Physical Description

application/pdf
159 p.
Title Plain
Unraveling the molecular mechanism of human polynucleotide phosphorylase (hPNPase) in controlling oxidized RNA
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2019
2019
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Unraveling the molecular mechanism of human polynucleotide phosphorylase (hPNPase) in controlling oxidized RNA
Other Title Info

Unraveling the molecular mechanism of human polynucleotide phosphorylase (hPNPase) in controlling oxidized RNA