Sand Compositional Analysis Using a Combined Geological and Spectroscopic Approach

File
Publisher
Florida Atlantic University
Date Issued
2016
EDTF Date Created
2016
Description
Many minerals, such as calcite and magnetite, show diagnostic overtone and combination bands in the 350-2500 nm window. Sand, though an important unconsolidated material with great abundance on the Earth’s surface, is largely overlooked in spectroscopic studies. Over 100 sand samples were analyzed through traditional microscopic methods and compared to spectral reflectance collected via an ASD Spectroradiometer. Multiple methods were chosen to compare spectroscopic data to sand composition and grain size: 1) existing spectral indices, 2) continuum removal, 3) derivative analysis, and 4) correlation analysis. Particular focus was given to carbonate content. Results from derivative and correlation analysis showed strong correlations in the 2180-2240 nm and 2300-2360 nm windows to carbonate content. Proposed here is the Normalized Difference Carbonate Sand Index (NDCSI), which showed Pearson correlations of r=-0.78 for light-colored samples and r=-0.77 for all samples used. This index is viable for use with carbonate-rich sands.
Note

Includes bibliography.

Language
Type
Extent
66 p.
Identifier
FA00004634
Additional Information
Includes bibliography.
Thesis (M.S.)--Florida Atlantic University, 2016.
FAU Electronic Theses and Dissertations Collection
Date Backup
2016
Date Created Backup
2016
Date Text
2016
Date Created (EDTF)
2016
Date Issued (EDTF)
2016
Extension


FAU

IID
FA00004634
Organizations
Person Preferred Name

Smith, Molly E.

author

Graduate College
Physical Description

application/pdf
66 p.
Title Plain
Sand Compositional Analysis Using a Combined Geological and Spectroscopic Approach
Use and Reproduction
Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2016
2016
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Sand Compositional Analysis Using a Combined Geological and Spectroscopic Approach
Other Title Info

Sand Compositional Analysis Using a Combined Geological and Spectroscopic Approach