PATH PLANNING FOR THE HYBRID AERIAL UNDERWATER ROBOTIC SYSTEM

File
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
Marine food chains are highly stressed by aggressive fishing practices and environmental damage. Aquaculture has increasingly become a source of seafood which spares the deleterious impact to wild fisheries, but it requires continuous water quality data to successfully grow and harvest fish. Aerial drones have great potential to monitor large areas quickly and efficiently. The Hybrid Aerial Underwater Robotic System (HAUCS) is a swarm of unmanned aerial vehicles (UAVs) and underwater measurement devices designed to collect water quality data of aquaculture ponds. The routing of drones to cover each fish pond on an aquaculture farm can be reduced to the Vehicle Routing Problem (VRP). A dataset is created to simulate the distribution of ponds on a farm and is used to assess the HAUCS Path Planning Algorithm (HPP). Its performance is compared with the Google Linear Optimization Package (GLOP) and a Graph Attention Model (GAM) for routing around the simulated farms. The three methods are then implemented on a team of waterproof drones and experimentally verified at Southern Illinois University’s (SIU) Aquaculture Research Center. GLOP and GAM are demonstrated to be efficient path planning methods for small farms, while HPP is likely to be more suited to large farms. HAUCS shows great value as a future direction for intelligent aquaculture, but issues with obstacle avoidance and robust waterproofing need to be addressed before commercialization. The future of aquaculture promises more integrated and sustainable operations by mimicking natural systems and leveraging deeper understandings of biology.
Note

Includes bibliography.

Language
Type
Extent
68 p.
Subject (Topical)
Identifier
FA00014108
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Thesis (MS)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00014108
Person Preferred Name

Davis, Anthony C.

author

Graduate College
Physical Description

application/pdf
68 p.
Title Plain
PATH PLANNING FOR THE HYBRID AERIAL UNDERWATER ROBOTIC SYSTEM
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
PATH PLANNING FOR THE HYBRID AERIAL UNDERWATER ROBOTIC SYSTEM
Other Title Info

PATH PLANNING FOR THE HYBRID AERIAL UNDERWATER ROBOTIC SYSTEM