Analysis of KED-mediated wound response to biotic stress and mechanical damage in tomato plants (Solanum lycopersicum)

File
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
Lysine-rich KED was previously identified from wounded tobacco (Nicotiana tabacum) leaves before the alignment of protein sequences between NtKED (Nicotiana tabacum KED) and SlKED (Solanum lycopersicum KED) were discovered to display 55.1% identity. Using previously generated SlKED knockout plants by CRISPR/Cas9, we performed biological assays, to investigate the role of KED in wound response to biotic and abiotic stress. Previous studies implied that the KED gene functions as a role in the wound-induced mechanism, as well as suggested that it may also function in the plant defense system against biotic stress and insect herbivory. The results from bioassays using tobacco hornworm (Manduca sexta) have proven inconclusive thus far. Expression of KED is induced not only by mechanical wounding but also by touching such as brushing the leaves, indicating that this gene is sensitive to subtle environmental signal and may be involved in defense response against abiotic stress. To further investigate the KED gene’s role in the plant defense system, biological assays using both specialist and generalist herbivores, transcription analysis using various phytohormone mutant plants, and Evans blue cellular damage assays were performed. Our findings imply that the KED gene does not seem to have a long-term effect on insect herbivory but may have a shortterm anti-feeding effect against insect herbivores. Results from the Evans blue membrane damage assay indicate the KED gene may provide some benefit to mechanically damaged plants in a short-term period post-wounding of leaf tissues. Using the SlKED knockout as genetic tool, we conclude that this gene does not confer resistance to insect herbivores over a long-term but seems to provide a beneficial defense response in the short-term. Our membrane damage assay results also imply that this gene may be involved in membrane stabilization and repair of cellular damage after mechanical wounding.
Note

Includes bibliography.

Language
Type
Extent
59 p.
Identifier
FA00014001
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Thesis (MS)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00014001
Organizations
Person Preferred Name

Nifakos, Nicholas

author

Graduate College
Physical Description

application/pdf
59 p.
Title Plain
Analysis of KED-mediated wound response to biotic stress and mechanical damage in tomato plants (Solanum lycopersicum)
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
Analysis of KED-mediated wound response to biotic stress and mechanical damage in tomato plants (Solanum lycopersicum)
Other Title Info

Analysis of KED-mediated wound response to biotic stress and mechanical damage in tomato plants (Solanum lycopersicum)