DATA AUGMENTATION IN DEEP LEARNING

File
Publisher
Florida Atlantic University
Date Issued
2023
EDTF Date Created
2023
Description
Recent successes of Deep Learning-powered AI are largely due to the trio of: algorithms, GPU computing, and big data. Data could take the shape of hospital records, satellite images, or the text in this paragraph. Deep Learning algorithms typically need massive collections of data before they can make reliable predictions. This limitation inspired investigation into a class of techniques referred to as Data Augmentation. Data Augmentation was originally developed as a set of label-preserving transformations used in order to simulate large datasets from small ones. For example, imagine developing a classifier that categorizes images as either a “cat” or a “dog”. After initial collection and labeling, there may only be 500 of these images, which are not enough data points to train a Deep Learning model. By transforming these images with Data Augmentations such as rotations and brightness modifications, more labeled images are available for model training and classification! In addition to applications for learning from limited labeled data, Data Augmentation can also be used for generalization testing. For example, we can augment the test set to set the visual style of images to “winter” and see how that impacts the performance of a stop sign detector.
The dissertation begins with an overview of Deep Learning methods such as neural network architectures, gradient descent optimization, and generalization testing. Following an initial description of this technology, the dissertation explains overfitting. Overfitting is the crux of Deep Learning methods in which improvements to the training set do not lead to improvements on the testing set. To the rescue are Data Augmentation techniques, of which the Dissertation presents an overview of the augmentations used for both image and text data, as well as the promising potential of generative data augmentation with models such as ChatGPT. The dissertation then describes three major experimental works revolving around CIFAR-10 image classification, language modeling a novel dataset of Keras information, and patient survival classification from COVID-19 Electronic Health Records. The dissertation concludes with a reflection on the evolution of limitations of Deep Learning and directions for future work.
Note

Includes bibliography.

Language
Type
Extent
161 p.
Identifier
FA00014228
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2023.
FAU Electronic Theses and Dissertations Collection
Date Backup
2023
Date Created Backup
2023
Date Text
2023
Date Created (EDTF)
2023
Date Issued (EDTF)
2023
Extension


FAU

IID
FA00014228
Person Preferred Name

Shorten, Connor

author

Graduate College
Physical Description

application/pdf
161 p.
Title Plain
DATA AUGMENTATION IN DEEP LEARNING
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2023
2023
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
DATA AUGMENTATION IN DEEP LEARNING
Other Title Info

DATA AUGMENTATION IN DEEP LEARNING