The dynamic behavior of straight cantilever pipes conveying fluid is studied, establishing the conditions of stability for systems, which are only limited to move in a 2D-plane. Internal friction of pipe and the effect of the surrounding fluid are neglected. A universal stability curve showing boundary between the stable and unstable behaviors is constructed by finding solution to equation of motion by exact and high-dimensional approximate methods. Based on the Boobnov-Galerkin method, the critical velocities for the fluid are obtained by using both the eigenfunctions of a cantilever beam (beam functions), as well as the utilization of Duncan's functions. Stability of cantilever pipes with uniform and non-uniform elastic foundations of two types are considered and discussed. Special emphasis is placed on the investigation of the paradoxical behavior previously reported in the literature.