TACKLING BIAS, PRIVACY, AND SCARCITY CHALLENGES IN HEALTH DATA ANALYTICS

File
Publisher
Florida Atlantic University
Date Issued
2023
EDTF Date Created
2023
Description
Health data analysis has emerged as a critical domain with immense potential to revolutionize healthcare delivery, disease management, and medical research. However, it is confronted by formidable challenges, including sample bias, data privacy concerns, and the cost and scarcity of labeled data. These challenges collectively impede the development of accurate and robust machine learning models for various healthcare applications, from disease diagnosis to treatment recommendations.
Sample bias and specificity refer to the inherent challenges in working with health datasets that may not be representative of the broader population or may exhibit disparities in their distributions. These biases can significantly impact the generalizability and effectiveness of machine learning models in healthcare, potentially leading to suboptimal outcomes for certain patient groups. Data privacy and locality are paramount concerns in the era of digital health records and wearable devices. The need to protect sensitive patient information while still extracting valuable insights from these data sources poses a delicate balancing act. Moreover, the geographic and jurisdictional differences in data regulations further complicate the use of health data in a global context. Label cost and scarcity pertain to the often labor-intensive and expensive process of obtaining ground-truth labels for supervised learning tasks in healthcare. The limited availability of labeled data can hinder the development and deployment of machine learning models, particularly in specialized medical domains.
Note

Includes bibliography.

Language
Type
Extent
152 p.
Identifier
FA00014336
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2023.
FAU Electronic Theses and Dissertations Collection
Date Backup
2023
Date Created Backup
2023
Date Text
2023
Date Created (EDTF)
2023
Date Issued (EDTF)
2023
Extension


FAU

IID
FA00014336
Person Preferred Name

Wang, Shuwen

author

Graduate College
Physical Description

application/pdf
152 p.
Title Plain
TACKLING BIAS, PRIVACY, AND SCARCITY CHALLENGES IN HEALTH DATA ANALYTICS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2023
2023
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
TACKLING BIAS, PRIVACY, AND SCARCITY CHALLENGES IN HEALTH DATA ANALYTICS
Other Title Info

TACKLING BIAS, PRIVACY, AND SCARCITY CHALLENGES IN HEALTH DATA ANALYTICS