ARTIFICIAL INTELLIGENCE (AI) ENABLES SENSORIMOTOR INTEGRATION FOR PROSTHETIC HAND DEXTERITY

File
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
Hand amputation is a devastating feeling for amputees, and it is lifestyle changing since it is challenging to perform the basic life activities with amputation. Hand amputation means interrupting the closed loop between sensory feedback and motor control. The absence of sensory feedback requires a significant cognitive effort from the amputee to perform basic daily activities with prosthetic hand. Loss of tactile sensations is a major roadblock preventing amputees from multitasking or using the full dexterity of their prosthetic hands. One of the most significant features lacking from commercial prosthetic hands is sensory feedback, according to amputees. Many amputees abandoned their prosthetic devices due to the lack of tactile feedback. In the field of prosthetics, restoring sensory feedback is the most challenging task due to the complexity of integration between the prosthetic and the peripheral nervous system. A prosthetic hand with sensory feedback that imitates the intact hand would improve the lives of millions of amputees worldwide by inducing the prosthetic hand to be a part of the body image and significant impact the control of the prosthetic. To restore the sensory feedback and improve the dexterity for upper limb amputee, multiple components needed to be integrated together to provide the sensory feedback. Tactile sensors are the first components that needed to be integrated into the sensorimotor loop. In this research two tactile sensors were integrated in the sensory feedback loop. The first tactile sensor is BioTac which is a commercially available sensor. The first novel contribution with BioTac is the development of an ANN classifier to detect the direction a grasped object slips in a dexterous robotic hand in real time, and the second novel aspect of this study is the use of slip direction detection for adaptive robotic grasp reflexes. The second tactile sensor is the liquid metal sensor (LMS), this sensor was developed entirely in our lab (BioRobotics lab). The novel contribution for LMS is to detect and prevent slip in real time application, and to recognize different surface features and different sliding speeds.
Note

Includes bibliography.

Language
Type
Extent
271 p.
Identifier
FA00013875
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00013875
Person Preferred Name

Abd, Moaed A.

author

Graduate College
Physical Description

application/pdf
271 p.
Title Plain
ARTIFICIAL INTELLIGENCE (AI) ENABLES SENSORIMOTOR INTEGRATION FOR PROSTHETIC HAND DEXTERITY
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
ARTIFICIAL INTELLIGENCE (AI) ENABLES SENSORIMOTOR INTEGRATION FOR PROSTHETIC HAND DEXTERITY
Other Title Info

ARTIFICIAL INTELLIGENCE (AI) ENABLES SENSORIMOTOR INTEGRATION FOR PROSTHETIC HAND DEXTERITY