Embodied Biological Computers: Closing The Loop on Sensorimotor Integration of Dexterous Robotic Hands

File
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
The sensation of touch is an integral part of using our hands. As different researchers work toward the restoration of afferent sensation in prosthetic hands, it becomes urgent to better understand how an artificial hand’s afferent inputs are affected by the efferent muscular outputs, and vice-versa. Current methods of neuroprosthetic research have many regulatory hurdles, time, cost, and associated risk to the patient. To circumvent these hurdles, we developed a non-invasive, closed-loop (CL) neuroprosthetic research platform, integrating artificial tactile signals from an artificial hand with biomimetically-stimulated biological neuronal networks (BNNs) cultured in a multielectrode array (MEA) chamber. These living embodied biological computers (EBCs) can provide a non-invasive alternative for investigating invasive neuroprosthetic interfaces. With them we can explore a variety of control techniques, tactile sensation encoding methods, and neural decoding methods to increase the rate of research in this area with minimal regulatory approval, greatly reduced cost and time, and no risk to the patients. In the first stage of this integration, our EBC was programmed to embody neuronal spiking from spontaneously active “efferent” receptive fields in cultured BNNs as intentional signals for movement. Bursts were transferred to a robotic hand and initiated a tapping motion of the index finger laid in proximity to a surface. Contact elicited artificial sensations, which were registered by a biotac tactile sensor array fit to the robotic fingertip.
Note

Includes bibliography.

Language
Type
Extent
142 p.
Identifier
FA00014092
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00014092
Person Preferred Name

Ades, Craig

author

Graduate College
Physical Description

application/pdf
142 p.
Title Plain
Embodied Biological Computers: Closing The Loop on Sensorimotor Integration of Dexterous Robotic Hands
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
Embodied Biological Computers: Closing The Loop on Sensorimotor Integration of Dexterous Robotic Hands
Other Title Info

Embodied Biological Computers: Closing The Loop on Sensorimotor Integration of Dexterous Robotic Hands