COMBINING TRADITIONAL AND IMAGE ANALYSIS TECHNIQUES FOR UNCONSOLIDATED EXPOSED TERRIGENOUS BEACH SAND CHARACTERIZATION

File
Publisher
Florida Atlantic University
Date Issued
2020
EDTF Date Created
2020
Description
Traditional sand analysis is labor and cost-intensive, entailing specialized equipment and operators trained in geological analysis. Even a small step to automate part of the traditional geological methods could substantially improve the speed of such research while removing chances of human error. Digital image analysis techniques and computer vision have been well developed and applied in various fields but rarely explored for sand analysis. This research explores capabilities of remote sensing digital image analysis techniques, such as object-based image analysis (OBIA), machine learning, digital image analysis, and photogrammetry to automate or semi-automate the traditional sand analysis procedure. Here presented is a framework combining OBIA and machine learning classification of microscope imagery for use with unconsolidated terrigenous beach sand samples. Five machine learning classifiers (RF, DT, SVM, k-NN, and ANN) are used to model mineral composition from images of ten terrigenous beach sand samples. Digital image analysis and photogrammetric techniques are applied and evaluated for use to characterize sand grain size and grain circularity (given as a digital proxy for traditional grain sphericity). A new segmentation process is also introduced, where pixel-level SLICO superpixel segmentation is followed by spectral difference segmentation and further levels of superpixel segmentation at the object-level. Previous methods of multi-resolution and superpixel segmentation at the object level do not provide the level of detail necessary to yield optimal sand grain-sized segments. In this proposed framework, the DT and RF classifiers provide the best estimations of mineral content of all classifiers tested compared to traditional compositional analysis. Average grain size approximated from photogrammetric procedures is comparable to traditional sieving methods, having an RMSE below 0.05%. The framework proposed here reduces the number of trained personnel needed to perform sand-related research. It requires minimal sand sample preparation and minimizes user-error that is typically introduced during traditional sand analysis.
Note

Includes bibliography.

Language
Type
Extent
155 p.
Identifier
FA00013517
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2020.
FAU Electronic Theses and Dissertations Collection
Date Backup
2020
Date Created Backup
2020
Date Text
2020
Date Created (EDTF)
2020
Date Issued (EDTF)
2020
Extension


FAU

IID
FA00013517
Organizations
Person Preferred Name

Smith, Molly Elizabeth

author

Graduate College
Physical Description

online resource
155 p.
Title Plain
COMBINING TRADITIONAL AND IMAGE ANALYSIS TECHNIQUES FOR UNCONSOLIDATED EXPOSED TERRIGENOUS BEACH SAND CHARACTERIZATION
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2020
2020
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
COMBINING TRADITIONAL AND IMAGE ANALYSIS TECHNIQUES FOR UNCONSOLIDATED EXPOSED TERRIGENOUS BEACH SAND CHARACTERIZATION
Other Title Info

COMBINING TRADITIONAL AND IMAGE ANALYSIS TECHNIQUES FOR UNCONSOLIDATED EXPOSED TERRIGENOUS BEACH SAND CHARACTERIZATION