Wave attenuation by rigid and flexible-membrane submerged breakwaters

File
Publisher
Florida Atlantic University
Date Issued
1996
Description
This research investigates the use of rigid and flexible-membrane submerged breakwaters for wave energy attenuation. A comprehensive review of breakwater design criteria and previous research on submerged breakwaters is included. Physical model laboratory studies conducted by the author and other researchers are investigated as a means for obtaining formulations for wave transmission coefficients. The mechanisms by which waves are attenuated and break are analyzed using video photography of the wave tank tests. The primary objective of this doctoral research was to determine and compare the wave attenuation of non-conventional rigid and flexible-membrane type submerged breakwaters. Physical model tests were performed using the wave tank facilities at Florida Institute of Technology located in Melbourne, Florida. Six different breakwater cross-sections used were: (1) rectangular, (2) triangular, (3) P.E.P.-$Reef\sp{TM}$, (4) single sand-filled container, (5) three stacked sand-filled containers, and (6) one single water-filled container. The first three breakwater units were rigid (or monolithic), and the last three units are flexible-membrane breakwater units. All six units tested had the same height, length (longshore), and base width (cross-shore), with different cross-sections and shapes, and were composed of different materials. A new classification scheme was developed for breakwaters and artificial reefs, based on water depth, structure height, and wave heights. The wave-structure interaction resulting in the wave breaking on the submerged breakwaters was documented, and the observations were analyzed. Wave transmission coefficients were computed for the six different breakwater models tested, and comparisons between the different models were made. Conclusions regarding the primary factors affecting the effectiveness of rigid and flexible-membrane submerged breakwaters were developed, as were recommendations for further research.
Note

College of Engineering and Computer Science

Language
Type
Extent
215 p.
Subject (Topical)
Identifier
9780591052862
ISBN
9780591052862
Additional Information
College of Engineering and Computer Science
FAU Electronic Theses and Dissertations Collection
Thesis (Ph.D.)--Florida Atlantic University, 1996.
Date Backup
1996
Date Text
1996
Date Issued (EDTF)
1996
Extension


FAU
FAU
admin_unit="FAU01", ingest_id="ing1508", creator="staff:fcllz", creation_date="2007-07-18 20:33:26", modified_by="staff:fcllz", modification_date="2011-01-06 13:08:42"

IID
FADT12468
Issuance
monographic
Person Preferred Name

Harris, Lee Errol.
Graduate College
Physical Description

215 p.
application/pdf
Title Plain
Wave attenuation by rigid and flexible-membrane submerged breakwaters
Use and Reproduction
Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

1996
monographic

Boca Raton, Fla.

Florida Atlantic University
Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Wave attenuation by rigid and flexible-membrane submerged breakwaters
Other Title Info

Wave attenuation by rigid and flexible-membrane submerged breakwaters