Ocean turbulence measurement using an autonomous underwater vehicle

File
Publisher
Florida Atlantic University
Date Issued
1997
Description
The complex dynamics of the oceans are only beginning to be understood. There is a wide range of dynamic scales in the ocean from the Gulf Stream, with scales as large as the ocean itself, to the microstructure scales of turbulent dissipation. The program of work presented in this dissertation involves the implementation of a turbulence measurement package on board a recently developed small autonomous underwater vehicle (AUV), as well as the design of an optimized AUV platform and the development of new oceanographic sensors for measurement of micro-structure velocity. Attention is focused on ensuring that the platform is sufficiently quiet since small-scale, low level measurements are easily contaminated by the measurement process, structural vibrations, rigid-body motions and electrical interference; particularly so with the requisite machinery of a self-propelled AUV. Successful measurement entails making suitable modification to the AUV and its mode of operation. In addition to optimization of the measurement platform, consideration is given here to the optimization of the sensors for flow measurement using an AUV. Included in the research are laboratory tests of the new probes and a successful mission in making high quality measurements of ocean turbulence. Modern adaptation of the well-known Pitot tube shows promise in being less sensitive to vehicle self motion as well as yielding a greater spectral range, thereby facilitating more accurate measurement. Comparisons with shear probes and hot film probes, conducted in an axisymmetric water jet and in a wind tunnel, suggest that the pressure probe, developed as part of the work presented here, resolves the dissipation scales more fully than the shear probe. Additionally, the pressure probe does not suffer from the spectral distortion of the signal observed in measurements using a shear probe. In addition to measurement of velocity microstructure, consideration is given to the implementation of modern signal processing hardware in designing a method for the direct measurement of density microstructure. This basic property of the ocean has never before been measured directly. Results, obtained off the Florida coast in 18 meter deep water with the Ocean Explorer AUV; Cook, reveal a complex mixing event. Simultaneous measurement of two components of the velocity microstructure and measurements with a CTD package are analyzed and the instantaneous rates of viscous dissipation of turbulent energy are calculated. The dissipation rate was not stationary and showed a gradient vertically with depth as well as horizontally. The AUV platform, modified for low vibration noise, allowed measurement of dissipation rates of O(10^-8 W/kg).
Note

College of Engineering and Computer Science

Language
Type
Extent
188 p.
Identifier
9780591616811
ISBN
9780591616811
Additional Information
College of Engineering and Computer Science
FAU Electronic Theses and Dissertations Collection
Thesis (Ph.D.)--Florida Atlantic University, 1997.
Date Backup
1997
Date Text
1997
Date Issued (EDTF)
1997
Extension


FAU
FAU
admin_unit="FAU01", ingest_id="ing1508", creator="staff:fcllz", creation_date="2007-07-18 20:39:34", modified_by="staff:fcllz", modification_date="2011-01-06 13:08:44"

IID
FADT12532
Issuance
monographic
Person Preferred Name

Holappa, Kenneth Walter.
Graduate College
Physical Description

188 p.
application/pdf
Title Plain
Ocean turbulence measurement using an autonomous underwater vehicle
Use and Reproduction
Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

1997
monographic

Boca Raton, Fla.

Florida Atlantic University
Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Ocean turbulence measurement using an autonomous underwater vehicle
Other Title Info

Ocean turbulence measurement using an autonomous underwater vehicle