Note
Seagrass communities in the Florida Keys are receiving increased nutrient loadings from a variety of land-based human activities that are accelerating coastal eutrophication, We assessed relationships among total nitrogen (TN) and total phosphorus (TP) concentrations of the water column and the productivity, biomass, and epiphyte levels of the seagrasses Thalassia testudinum and Halodule wrightii along three onshore-offshore transects (Key West, Big Pine Key, and Long Key) stratified a priori into hypereutrophic (HYPER), eutrophic (EUTR), mesotrophic (MESO), and oligotrophic (OLIGO) communities with increasing distance from shore.