The role of BDNF in the survival and morphological development of adult-born olfactory neurons

File
Publisher
Florida Atlantic University
Date Issued
2018
EDTF Date Created
2018
Description
Olfactory Granule cells (GCs) are a population of inhibitory interneurons
responsible for maintaining normal olfactory bulb (OB) function and circuitry. Through
dendrodendritic synapses with the OBs projection neurons, the GCs regulate information
sent to the olfactory cortices. Throughout adulthood, GCs continue to integrate into the OB
and contribute to olfactory circuitry. However, only ~50% will integrate and survive longterm.
Factors aiding in the survival and morphological development of these neurons are
still being explored. The neurotrophin brain-derived neurotrophic factor (BDNF) aids in
the survival and dendritic spine maturation/maintenance in several populations of CNS
neurons. Investigators show that increasing BDNF in the adult-rodent SVZ stimulates
proliferation and increases numbers of new OB GCs. However, attempts to replicate these
experiments failed to find that BDNF affects proliferation or survival of adult-born granule
cells (abGCs). BDNFs regulation of dendritic spines in the CNS is well characterized. In
the OB, absence of BDNF’s receptor on abGCs hinders normal spine development and demonstrates a role for BDNF /TrkB signaling in abGCs development. In this study, we
use transgenic mice over-expressing endogenous BDNF in the OB (TgBDNF) to determine
how sustained increased in BDNF affect the morphology of olfactory GCs and the survival
and development of abGCs. Using protein assays, we discovered that TgBDNF mice have
higher BDNF protein levels in their OB. We employed a Golgi-cox staining technique to
show that increased BDNF expression leads to an increase in dendritic spines, mainly the
mature, headed-type spine on OB GCs. With cell birth-dating using 5-bromo-2’-
deoxyuridine (BrdU), immunofluorescent cell markers, TUNEL staining and confocal
microscopy, we demonstrate that over-expression of BDNF in the OB does not increase
survival of abGCs or reduce cell death in the GC population. Using virally labeled abGCs,
we concluded that abGCs in TgBDNF mice had similar integration patterns compared to
wild-type (WT) mice, but maintained increases in apical headed-type spine density from
12 to 60 days PI. The evidence combined demonstrates that although increased BDNF does
not promote cell survival, BDNF modifies GC morphology and abGC development
through its regulation of dendritic spine development, maturation and maintenance in vivo.
Note

Includes bibliography.

Language
Type
Extent
163 p.
Identifier
FA00013159
Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2018.
FAU Electronic Theses and Dissertations Collection
Date Backup
2018
Date Created Backup
2018
Date Text
2018
Date Created (EDTF)
2018
Date Issued (EDTF)
2018
Extension


FAU

IID
FA00013159
Organizations
Person Preferred Name

McDole, Brittnee

author

Graduate College
Physical Description

application/pdf
163 p.
Title Plain
The role of BDNF in the survival and morphological development of adult-born olfactory neurons
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2018
2018
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
The role of BDNF in the survival and morphological development of adult-born olfactory neurons
Other Title Info

The role of BDNF in the survival and morphological development of adult-born olfactory neurons