pH Dynamics within the Drosophila Synaptic Cleft During Activity

File
Publisher
Florida Atlantic University
Date Issued
2023
EDTF Date Created
2023
Description
Acute pH sensitivity of many neural mechanisms highlights the vulnerability of neurotransmission to the pH of the extracellular milieu. The dogma is that the synaptic cleft will acidify upon neurotransmission because the synaptic vesicles corelease neurotransmitters and protons to the cleft, and the direct data from sensory ribbon-type synapses support the acidification of the cleft. However, ribbon synapses have a much higher release probability than conventional synapses, and it’s not established whether conventional synapses acidify as well. To test the acidification of the cleft in the conventional synapse, we used genetically encoded fluorescent pH reporters targeted to the synaptic cleft of Drosophila larvae. We observed alkalinization rather than acidification during activity, and this alkalinization was dependent on the exchange of protons for calcium at the postsynaptic membrane.
A reaction-diffusion computational model of the pH dynamics at the Drosophila larval neuromuscular junction was developed to leverage the experimental data. The model incorporates the release of glutamate, ATP, and protons from synaptic vesicles into the cleft, PMCA activity, bicarbonate, and phosphate buffering systems. By means of numerical simulations, we reveal a highly dynamic pH landscape within the synaptic cleft, harboring deep but exceedingly rapid acid transients that give way to a prolonged period of alkalinization.
Note

Includes bibliography.

Language
Type
Extent
194 p.
Identifier
FA00014221
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2023.
FAU Electronic Theses and Dissertations Collection
Date Backup
2023
Date Created Backup
2023
Date Text
2023
Date Created (EDTF)
2023
Date Issued (EDTF)
2023
Extension


FAU

IID
FA00014221
Organizations
Person Preferred Name

Feghhi, Touhid

author

Graduate College
Physical Description

application/pdf
194 p.
Title Plain
pH Dynamics within the Drosophila Synaptic Cleft During Activity
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2023
2023
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
pH Dynamics within the Drosophila Synaptic Cleft During Activity
Other Title Info

pH Dynamics within the Drosophila Synaptic Cleft During Activity