The effect of applied periodic straining field on the behavior of coherent vortical structures in the turbulent boundary layer is studied. In particular, the coherent vortical longitudinal structures in the turbulent boundary layer in the form of isolated vortices or in the form of pairs of counter-rotating vortices is considered. The effect on the pressure fluctuations on the wall due to the applied periodic strain is studied. A numerical method using Contour Dynamics technique and incompressible, inviscid equations of motion is developed to determine the evolution of these structures in time. The pressure fluctuations on the wall are calculated making use of the unsteady Bernoulli's equation. The various parameters associated with the coherent structures in the turbulent boundary layer such as the strength of the vortices, their distance from the wall, separation distance between counter-rotating vortices, the frequency of the applied straining field, the magnitude of the straining field and the stretching rate are varied to study the resultant pressure fluctuations. It is observed that at low applied frequencies, there are high modulations in the surface pressure fluctuations, and at higher applied frequencies of straining field there is reduction in surface pressure fluctuations in the boundary layer.