QUANTIFICATION OF PERMAFROST THAW DEPTH AND SNOW DEPTH IN INTERIOR ALASKA AT MULTIPLE SCALES USING FIELD, AIRBORNE, AND SPACEBORNE DATA

File
Publisher
Florida Atlantic University
Date Issued
2023
EDTF Date Created
2023
Description
Much of Interior Alaska contains permafrost, which is a permanently frozen layer found within or at the surface of the Earth. Historically, this permafrost has experienced relative stability, with limited thaw during warmer summer months and fire events. However, largely due to the impact of a warming climate, among other factors, permafrost that would typically experience limited thawing during the summer season has recently been thawing at an unprecedented rate. Trapped by this layer of permafrost is a large quantity of carbon (C), which could be released into the atmosphere as greenhouse gases such as carbon dioxide (CO2) and methane (CH4). Due to the remoteness of the Arctic, there is a lack of yearly recorded permafrost thaw depth and snow depth values across much of the region. As such, the focus of this research was to establish a framework to identify how permafrost thaw depth and snow depth can be predicted across both a 1 km2 local scale and a 100 km2 regional scale in Interior Alaska by a combination of 1 m2 field data, airborne and spaceborne remote sensing products, and object-based machine learning techniques from 2014 – 2022. Machine learning techniques Random Forest, Support Vector Machine, k-Nearest Neighbor, Multiple Linear Regression, and Ensemble Analysis were applied to predict the permafrost thaw depth and snow depth. Results indicated that this methodology was able to successfully upscale both the 1 m2 field permafrost thaw depth and snow depth data to a 1 km2 local scale before successfully further upscaling the estimated results to a 100 km2 regional scale, while also linking the estimated values with ecotypes. The best results were produced by Ensemble Analysis, which tended to have the highest Pearson’s Correlation Coefficient, alongside the lowest Mean Absolute Error and Root Mean Square Error. Both Random Forest and k-Nearest Neighbor also provided encouraging results. The presence or absence of a thick canopy cover was strongly connected with thaw depth and snow depth estimates. Image resolution was an important factor when upscaling field data to the local scale, however it was overall less critical for further upscaling to the regional scale.
Note

Includes bibliography.

Language
Type
Extent
240 p.
Identifier
FA00014229
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2023.
FAU Electronic Theses and Dissertations Collection
Date Backup
2023
Date Created Backup
2023
Date Text
2023
Date Created (EDTF)
2023
Date Issued (EDTF)
2023
Extension


FAU

IID
FA00014229
Organizations
Person Preferred Name

Brodylo, David

author

Graduate College
Physical Description

application/pdf
240 p.
Title Plain
QUANTIFICATION OF PERMAFROST THAW DEPTH AND SNOW DEPTH IN INTERIOR ALASKA AT MULTIPLE SCALES USING FIELD, AIRBORNE, AND SPACEBORNE DATA
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2023
2023
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
QUANTIFICATION OF PERMAFROST THAW DEPTH AND SNOW DEPTH IN INTERIOR ALASKA AT MULTIPLE SCALES USING FIELD, AIRBORNE, AND SPACEBORNE DATA
Other Title Info

QUANTIFICATION OF PERMAFROST THAW DEPTH AND SNOW DEPTH IN INTERIOR ALASKA AT MULTIPLE SCALES USING FIELD, AIRBORNE, AND SPACEBORNE DATA