DATA-DRIVEN IDENTIFICATION AND CONTROL OF TURBULENT STRUCTURES USING DEEP NEURAL NETWORKS

File
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
Wall-bounded turbulent flows are pervasive in numerous physics and engineering applications. Such flows tend to have a strong impact on the design of ships, airplanes and rockets, industrial chemical mixing, wind and hydrokinetic energy, utility infrastructure and innumerable other fields. Understanding and controlling wall bounded turbulence has been a long-pursued endeavor yielding plentiful scientific and engineering discoveries, but there is much that remains unexplained from a fundamental viewpoint. One unexplained phenomenon is the formation and impact of coherent structures like the ejections of slow near-wall fluid into faster moving ow which have been shown to correlate with increases in friction drag. This thesis focuses on recognizing and regulating organized structures within wall-bounded turbulent flows using a variety of machine learning techniques to overcome the nonlinear nature of this phenomenon.
Deep Learning has provided new avenues of analyzing large amounts of data by applying techniques modeled after biological neurons. These techniques allow for the discovery of nonlinear relationships in massive, complex systems like the data found frequently in fluid dynamics simulation. Using a neural network architecture called Convolutional Neural Networks that specializes in uncovering spatial relationships, a network was trained to estimate the relative intensity of ejection structures within turbulent flow simulation without any a priori knowledge of the underlying flow dynamics. To explore the underlying physics that the trained network might reveal, an interpretation technique called Gradient-based Class Activation Mapping was modified to identify salient regions in the flow field which most influenced the trained network to make an accurate estimation of these organized structures. Using various statistical techniques, these salient regions were found to have a high correlation to ejection structures, and to high positive kinetic energy production, low negative production, and low energy dissipation regions within the flow. Additionally, these techniques present a general framework for identifying nonlinear causal structures in general three-dimensional data in any scientific domain where the underlying physics may be unknown.
Note

Includes bibliography.

Language
Type
Extent
134 p.
Identifier
FA00014119
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00014119
Person Preferred Name

Jagodinski, Eric

author

Graduate College
Physical Description

application/pdf
134 p.
Title Plain
DATA-DRIVEN IDENTIFICATION AND CONTROL OF TURBULENT STRUCTURES USING DEEP NEURAL NETWORKS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
DATA-DRIVEN IDENTIFICATION AND CONTROL OF TURBULENT STRUCTURES USING DEEP NEURAL NETWORKS
Other Title Info

DATA-DRIVEN IDENTIFICATION AND CONTROL OF TURBULENT STRUCTURES USING DEEP NEURAL NETWORKS