A PROBABILISTIC CHECKING MODEL FOR EFFECTIVE EXPLAINABILITY BASED ON PERSONALITY TRAITS

File
Publisher
Florida Atlantic University
Date Issued
2022
EDTF Date Created
2022
Description
It is becoming increasingly important for an autonomous system to be able to explain its actions to humans in order to improve trust and enhance human-machine collaboration. However, providing the most appropriate kind of explanations – in terms of length, format, and presentation mode of explanations at the proper time – is critical to enhancing their effectiveness. Explanation entails costs, such as the time it takes to explain and for humans to comprehend and respond. Therefore, the actual improvement in human-system tasks from explanations (if any) is not always obvious, particularly given various forms of uncertainty in knowledge about humans.
In this research, we propose an approach to address this issue. The key idea is to provide a structured framework that allows a system to model and reason about human personality traits as critical elements to guide proper explanation in human and system collaboration. In particular, we focus on the two concerns of modality and amount of explanation in order to optimize the explanation experience and improve overall system-human utility. Our models are based on probabilistic modeling and analysis (PRISM-games) to determine at run time what the most effective explanation under uncertainty is. To demonstrate our approach, we introduce a self-adaptative system called Grid – a virtual game – and the Stock Prediction Engine (SPE), which allows an automated system and a human to collaborate on the game and stock investments. Our evaluation of these exemplars, through simulation, demonstrates that a human subject’s performance and overall human-system utility is improved when considering the psychology of human personality traits in providing explanations.
Note

Includes bibliography.

Language
Type
Extent
118 p.
Identifier
FA00013894
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (Ph.D.)--Florida Atlantic University, 2022.
FAU Electronic Theses and Dissertations Collection
Date Backup
2022
Date Created Backup
2022
Date Text
2022
Date Created (EDTF)
2022
Date Issued (EDTF)
2022
Extension


FAU

IID
FA00013894
Person Preferred Name

Alharbi, Mohammed N.

author

Graduate College
Physical Description

application/pdf
118 p.
Title Plain
A PROBABILISTIC CHECKING MODEL FOR EFFECTIVE EXPLAINABILITY BASED ON PERSONALITY TRAITS
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2022
2022
Florida Atlantic University

Boca Raton, Fla.

Place

Boca Raton, Fla.
Title
A PROBABILISTIC CHECKING MODEL FOR EFFECTIVE EXPLAINABILITY BASED ON PERSONALITY TRAITS
Other Title Info

A PROBABILISTIC CHECKING MODEL FOR EFFECTIVE EXPLAINABILITY BASED ON PERSONALITY TRAITS