Signal Integrity is a major bottleneck for DSM designs. Signal integrity refers to wide variety of problems, which leads to misconception. Signal integrity causes delay or noise at the high-level, but this boils down to resistance, capacitance and inductance (RLC) at circuit level. Several analysis and reduction techniques were proposed for reducing these effects on signal integrity. This work solves the misconception by encompassing different problems Chat effect signal integrity and can be good reference for a integrated circuit designer. The objective is to analyze these modeling methods, reduction techniques, tools and make recommendations that aids in developing a methodology for perfect design closure with an emphasis on signal integrity. These recommendations would form a basis for developing a methodology to analyze interference effects at higher levels of abstraction.