Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination

File
Publisher
Florida Atlantic University
Date Issued
2021
EDTF Date Created
2021
Description
Prostate cancer (PCa) is the second most diagnosed cancer in men. The resistance of prostate cancer to chemotherapy has been linked to the ATP Binding Cassette (ABC)-Mediated Multidrug Resistance (MDR). This study investigated the combination of 3-Bromopyruvate (3-BPA) and the anti-inflammatory molecule SC-514 in reducing MDR in prostate cancer. The compounds were incorporated into a PLGA nanoparticles to increase delivery to target cells.
To investigate the effectiveness of SC-514 and/3-BPA, cytoxicity assays including trypan blue dye exclusion, MTT tetrazolium reduction, NBT, LDH release poly caspase detection, cell titer glow assay, and ELISA were utilized. Both immunofluorescence and multidrug resistance efflux assays were utilized to estimate the number of drug resistant cells. SC-514 was encapsulated in PLGA nanoparticles via single-emulsion method. SC-514 nanoparticles were analyzed utilizing Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Liquid chromatography–mass spectrometry (LC–MS) was used to measure the amount of SC- 514 released from the nanoparticle. Alternative SC-514 drug release quantification methods such as colony forming assay, wound healing assay, and transwell and migration assay were explored.
Note

Includes bibliography.

Language
Type
Extent
248 p.
Identifier
FA00013677
Rights

Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.

Additional Information
Includes bibliography.
Dissertation (PhD)--Florida Atlantic University, 2021.
FAU Electronic Theses and Dissertations Collection
Date Backup
2021
Date Created Backup
2021
Date Text
2021
Date Created (EDTF)
2021
Date Issued (EDTF)
2021
Extension


FAU

IID
FA00013677
Organizations
Person Preferred Name

Toluleke, O. Famuyiwa

author

Graduate College
Physical Description

application/pdf
248 p.
Title Plain
Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination
Use and Reproduction
Copyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
http://rightsstatements.org/vocab/InC/1.0/
Origin Information

2021
2021
Florida Atlantic University

Boca Raton, Fla.

Physical Location
Florida Atlantic University Libraries
Place

Boca Raton, Fla.
Sub Location
Digital Library
Title
Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination
Other Title Info

Overcoming Multidrug Resistance in Prostate Cancer Cells Using Nanoparticle Delivery of a Two-Drug Combination