Sex determination, Genetic

Model
Digital Document
Publisher
Florida Atlantic University
Description
Sex determination in leatherback sea turtles is directed primarily by the temperatures a
clutch experiences during the middle third of development. Warmer temperatures tend to produce females will cooler temperatures yield males. Nest temperatures can vary
spatially and temporally. During the 2010 and 2011 nesting seasons, this study estimated the hatchling sex ratio of leatherback sea turtles on Sandy Point National Wildlife Refuge (SPNWR), St. Croix, U.S. Virgin Islands. I measured sand temperatures from May- August and across the spatial range of leatherback nesting habitat. I spatially interpolated those temperatures to create maps that predicted temperatures for all nests incubating on SPWNR. Nest temperatures were also directly measured and compared with predicted nest temperatures to validate the prediction model. Sexes of dead-in-nest hatchlings and full term embryos were used to confirm the sex-temperature response. The model showed that microclimatic variation likely impacts the production of both sexes on SPNWR.
Model
Digital Document
Publisher
Florida Atlantic University
Description
South Florida's loggerhead (Caretta caretta), green (Chelonia mydas) and leatherback (Dermochelys coriacea) sea turtles hatchling have environmentally determined sex. The in situ nest mean hatchling sex ratios (SR) were highly female-biased : loggerhead F=0.89) and green turtle F=0.81; leatherback's SR was nearly balanced (0.55F). Nest temperatures and SRs differed between leatherbacks and loggerhead and green turtles. The latter two did not differ. The loggerhead response parameters were estimated within biological limitations by both 50-65% of incubation and mean middle 1/3 temperature. The maximum middle 1/3 temperature was the best-fit predictor for green turtles. No best-fit sex ratio-temperature response could be identified for leatherbacks. Clutches incubating under natural conditions can vary greatly in SR ; TRT differences may account for differences among species' sex ratios.