Renewable energy sources

Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents a complete method of modeling the autospectra of turbulence
in closed form via an expansion series using the von Kármán model as a basis function. It
is capable of modeling turbulence in all three directions of fluid flow: longitudinal,
lateral, and vertical, separately, thus eliminating the assumption of homogeneous,
isotropic flow. A thorough investigation into the expansion series is presented, with the
strengths and weaknesses highlighted. Furthermore, numerical aspects and theoretical
derivations are provided. This method is then tested against three highly complex flow
fields: wake turbulence inside wind farms, helicopter downwash, and helicopter
downwash coupled with turbulence shed from a ship superstructure. These applications
demonstrate that this method is remarkably robust, that the developed autospectral
models are virtually tailored to the design of white noise driven shaping filters, and that these models in closed form facilitate a greater understanding of complex flow fields in
wind engineering.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The technical and scientific challenges to provide reliable sources energy for US
and global economy are enormous tasks, and especially so when combined with strategic
and recent economic concerns of the last five years. It is clear that as part of the mix of
energy sources necessary to deal with these challenges, fuel cells technology will play
critical or even a central role. The US Department of Energy, as well as a number of the
national laboratories and academic institutions have been aware of the importance such
technology for some time. Recently, car manufacturers, transportation experts, and even
utilities are paying attention to this vital source of energy for the future. In this thesis, a
review of the main fuel cell technologies is presented with the focus on the modeling, and
control of one particular and promising fuel cell technology, aluminum air fuel cells. The
basic principles of this fuel cell technology are presented. A major part of the study
consists of a description of the electrochemistry of the process, modeling, and simulations
of aluminum air FC using Matlab Simulink™. The controller design of the proposed
model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output
and the alternative power source in order to fulfill a changing power load demand. Finally,
a cost analysis and assessment of this technology for portable devices, conclusions and
future recommendations are presented.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this Thesis is to demonstrate, through experimentation, that
ocean waves have a positive effect on the performance of an offshore wind
turbine. A scale model wind turbine was placed into a wave tank that was
completely covered and fitted with a variable speed fan to create different wind
and wave conditions for testing. Through testing, different power coefficient vs.
tip speed ratio graphs were created and a change in power coefficient was
observed between steady operating conditions and operating conditions with
waves. The results show a promising increase in power production for offshore
wind turbines when allowed to operate with the induced motion caused by the
amplitude and frequency of water waves created.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis discusses the coupling of a mechanical and electrical oscillator, an arrangement that is often encountered in mechatronics actuators and sensors. The dynamics of this coupled system is mathematically modeled and a low pass equivalent model is presented. Numerical simulations are then performed, for various input signals to characterize the nonlinear relationship between the electrical current and the displacement of the mass. Lastly a framework is proposed to estimate the mass position without the use of a position sensor, enabling the sensorless control of the coupled system and additionally providing the ability for the system to act as an actuator or a sensor. This is of value for health monitoring, diagnostics and prognostics, actuation and power transfer of a number of interconnected machines that have more than one electrical system, driving corresponding mechanical subsystems while being driven by the same voltage source and at the same time being spectrally separated and independent.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Pulsing the flow of reactants in proton exchange membrane fuel cells (PEMFC) is a new frontier in the area of fuel cell research. Although power performance losses resulting from water accumulation also referred to as flooding, and power performance recovery resulting from water removal or purging, have been studied and monitored, the nexus between pulsing of reactants and power performance has yet to be established. This study introduces pulsing of reactants as a method of improving power performance. This study investigates how under continuous supply of reactants, pressure increase due to water accumulation, and power performance decay in PEMFCs. Furthermore, this study shows that power performance can be optimized through pulsing of reactants, and it investigates several variables affecting the power production under these conditions. Specifically, changes in frequency, duty cycle, and shifting of reactants as they affect performance are monitored and analyzed. Advanced data acquisition and control software allow multi-input monitoring of thermo-fluid and electrical data, while analog and digital controllers make it possible to implement optimization techniques for both discrete and continuous modes.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Many issues related to the design and implementation of a maximum power point tracking (MPPT) converter as part of a photovoltaic (PV) system are addressed. To begin with, variations of the single diode model for a PV module are compared, to determine whether the simplest variation may be used for MPPT PV system modeling and analysis purposes. As part ot this determination, four different DC/DC converters are used in conjunction with these different PV models. This is to verify consistent behavior across the different PV models, as well as across the different converter topologies. Consistent results across the different PV models, will allow a simpler model to be used for simulation ana analysis. Consistent results with the different converters will verify that MPPT algorithms are converter independent. Next, MPPT algorithms are discussed. In particular,the differences between the perturb and observe, and the incremental conductance algorithms are explained and illustrated. A new MPPT algorithm is then proposed based on the deficiencies of the other algorithms. The proposed algorithm's parameters are optimized, and the results for different PV modules obtained. Realistic system losses are then considered, and their effect on the PV system is analyzed ; especially in regards to the MPPT algorithm. Finally, a PV system is implemented and the theoretical results, as well as the behavior of the newly proposed MPPT algorithm, are verified.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Straits of Florida has been noted as a potential location for extraction of the kydrokinetic energy of the Florida Current, in view of the strength of the current and its proximity to the shore. ... This research explores the Florida Current as a potential renewable energy source. By utilizing historical data, in situ observations of the Florida Current, and computer model data, the hydrokinetic resource of the Florida Current is characterized both spatially and temporally. Subsequently, based on the geographic variability of the hydrokinetic power and other factors that impact the economy of a hydrokinetic turbine array installation, the ideal locations for turbine array installation within the Florida Current are identified.... Additionally, an interactive tool has been developed in which array parameters are input - including installation location, turbine diameter, turbine cut-in speed, etc. - and array extraction estimates, ideal installation position, and water depth at the installation points are output. As ocean model data is prominently used in this research, a discussion about the limitations of the ocean model data and a method for overcoming these limitations are described. Globally, the distribution of hydrokinetic power intensity is evaluated to identify other currents that have a high hydrokinetic resource.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Simulations have been carried out to validate a hydrokinetic energy system non-dimensional scaling procedure. The requirements for a testing facility intended to test such devices will be determined from the results of the simulations. There are 6 simulations containing 3 prototype systems and 2 possible model facility depths to give a range of results. The first 4 tests are conducted using a varying current profile, while the last 2 tests use a constant current profile of 1.6 m/s. The 3 prototype systems include a: 6 m spherical buoy, a 12 m spherical buoy and a turbine component system. The mooring line used for the simulations is a 6x19 Wire Rope Wire Core of diameter 100 mm and length 1000 m. The simulations are implemented using Orcaflex to obtain the dynamic behavior of the prototype and scaled system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The incorporation of an ejector refrigeration cycle with a high temperature PEM fuel cell (HT-PEMFC) presents a novel approach to combined heat and power (CHP) applications. An ejector refrigeration system (ERS) can enhance the flexibility of a CHP system by providing an additional means of utilizing the fuel cell waste heat besides domestic hot water (DHW) heating. This study looks into the performance gains that can be attained by incorporating ejector refrigeration with HT-PEMFC micro-CHP (mCHP) systems (1 to 5kWe). The effectiveness of the ERS in utilizing fuel cell waste heat is studied as is the relulting enhancement to overall system efficiency. A test rig specially constructed to evaluate an ERS under simulated HT-PEMFC conditions is used to test the concept and verify modeling predictions. In addition, two separate analytical models were constructed to simulate the ERS test rig and a HT-PEMFC/ERS mCHP system. The ERS test rig was simulated using a Matlab based model, while two residential sized HT-PEMFC/ERS mCHP systems were simulated using a Simulink model. Using U.S. Energy Information Administration (EIA) air conditioning and DHW load profiles, as well as data collected from a large residential monitoring study in Florida, the Simulink model provides the results in system efficiency gain associated with supporting residential space cooling and water heating loads. It was found that incorporation of an ERS increased the efficiency of a HT-PEMFC mCHP system by 8 t0 10 percentage points over just using the fuel cell waste heat for DHW. In addition, results from the Matlab ERS test rig model were shown to match well with experimental results.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this thesis anchoring systems for marine renewable energy devices are examined for an area of interest off the coast of Southeast Florida that contains both ocean current and thermal resources for future energy extraction. Bottom types observed during previous regional benthic surveys are compiled and anchor performance of each potential anchor type for the observed bottom types is compared. A baseline range of environmental conditions is created by combining local current measurements and offshore industry standards. Numerical simulations of single point moored marine hydrokinetic devices are created and used to extract anchor loading for two potential deployment locations, multiple mooring scopes, and turbine rotor diameters up to 50 m. This anchor loading data is used for preliminary anchor sizing of deadweight and driven plate anchors on both cohesionless and cohesive soils. Finally, the capabilities of drag embedment and pile anchors relevant to marine renewable energy devices are discussed.