Calcite

Model
Digital Document
Publisher
Florida Atlantic University
Description
In this research, we use calcite and celestite inorganic model systems to better understand biological crystallization in the presence of organic biomolecules. Our goal is to understand what happens when biomolecules occlude into crystals and how that affects the structural organization. Specifically, we focus on the role the respective biomolecule chemistry plays in regulating the incorporation into a crystal. To visualize and characterize the biomolecule/mineral role in crystallization, a variety of techniques were used to image and analyze the respective model systems. The synthesized single crystals were characterized by light microscopy (LM). Scanning electron microscopy (SEM) and field-emission SEM (FE-SEM) were used to examine the morphology of the crystals. Structural and topographical analyses were carried out using atomic force microscopy (AFM). Fourier transform infrared spectroscopy (FTIR) and confocal Raman microscopy were both used to characterize functional groups, where Raman spectroscopic mappings provided the region-specific chemical composition of the crystal.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Leachate clogging in the Leachate Collection System (LCS) due to chemical precipitations and biofilms produced by microbial activities is a common phenomenon in any Municipal Solid Waste (MSW) landfill. This study focuses on quantifying the factors that impact the micro-environment of leachate; and microbial activities that help the precipitates to form and attach to the LCS. It also evaluates the performance of operational changes that have been implemented or the potential alternatives and recommends the possible measures to reduce the severity of clogging. A field scale side-by-side pipe network, and several laboratory setups were used in this study. Calcite is identified to be the predominant phase present in the precipitates using XRD/XRF analysis which, concur with the previous studies. Microbial growth and activities enhance the precipitation of CaCO3 in LCS. Clogging in LCS pipes can be controlled if not eliminated by continuous monitoring along with frequent cleaning with physiochemical processes.