Leachate--Purification

Model
Digital Document
Publisher
Florida Atlantic University
Description
Leachate clogging in the Leachate Collection System (LCS) due to chemical precipitations and biofilms produced by microbial activities is a common phenomenon in any Municipal Solid Waste (MSW) landfill. This study focuses on quantifying the factors that impact the micro-environment of leachate; and microbial activities that help the precipitates to form and attach to the LCS. It also evaluates the performance of operational changes that have been implemented or the potential alternatives and recommends the possible measures to reduce the severity of clogging. A field scale side-by-side pipe network, and several laboratory setups were used in this study. Calcite is identified to be the predominant phase present in the precipitates using XRD/XRF analysis which, concur with the previous studies. Microbial growth and activities enhance the precipitation of CaCO3 in LCS. Clogging in LCS pipes can be controlled if not eliminated by continuous monitoring along with frequent cleaning with physiochemical processes.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Advanced electrochemical oxidation processes have emerged as a promising method for the destruction of persistent organic material in variable waste streams. Although the process has been successfully employed for wastewater treatment applications, high energy requirements, and the risk of formation of undesirable by-products may limit its application in the field of leachate treatment. This study focuses on the investigation of the feasibility of removing organics and ammonia by electrochemical oxidation coupled with ozone, Fenton or lime. Landfill leachate was treated by two different bench scale electrochemical oxidation reactors coupled with ozone oxidation, Fenton coagulation or lime precipitation. The electrochemical oxidation was conducted using a titanium anode coated with multi-metal oxides (MMO) at three-different current densities for different durations. Treatment performance was determined based on the removal of COD, ammonium-N, and turbidity. A three-level factorial design was established, and response surface methodology (RSM) was introduced to determine the optimum process parameters. The results suggest that the process can remove appreciable amounts of ammonium-N and COD in a very short time, demonstrating that the process is effective in rapidly degrading recalcitrant organics in leachate.