Prions

Model
Digital Document
Publisher
Florida Atlantic University
Description
The misfolding of native, cellular prion protein (PrPc) to a conformationally altered pathogenic isoform, designated scrapie PrPsc, is the main molecular process involved in the pathogenesis of prion diseases. Prion diseases are marked by the accumulation of conformationally modified forms of cellular prion protein. An N-terminal portion of the prion protein, PrP (106-128), is a 23-residue peptide fragment and is characterized by an amphipathic structure with two domains: a hydrophilic N-terminal domain and a hydrophobic C-terminal domain. In this study, the aggregation characteristics of the PrP (106-128) peptide were investigated using a combination of biophysical approaches. We investigated the effect of different factors including concentrations, pH, and metal ions, on the aggregation of the peptide. Our results demonstrated that the peptide steadily aggregates at concentrations higher than 25 M. The aggregation propensity and fibril formation is higher at pH 7.4 and pH 8.1, and the aggregation is inhibited at pH lower than 6. Furthermore, our results indicate that the Cu2+ has much less effect on the peptide amyloidogenesis, while Zn2+ has a significant influence on the PrP (106-128) amyloidogenesis. We further presented a systematic analysis of the impact of phospholipid liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-racglycerol) (POPG) in the absence or presence of cholesterol, on the amyloidogenesis of PrP (106-128). The results showed that POPC vesicles does not significantly influence the aggregation kinetics of the peptide. However, the anionic lipid POPG delays the aggregation in a concentration-dependent manner, whereas the addition of POPG with the cholesterol shows fast kinetics of fibrillization, thus reducing the lag time of the aggregation kinetics. We also monitored the effect of cholesterol and its derivatives including cholesterol-SO4 and DC-cholesterol on PrP (106-128) amyloidogenesis. Our results showed that the cholesterol inhibits the peptide aggregation and delays the formation of fibrils in a concentration-dependent manner. Cholesterol-SO4 dramatically facilitates the aggregation at high concentrations but has the potential to slow down the fibrillization at low concentrations, whereas cationic DC-cholesterol vesicles can effectively inhibit peptide fibril formation at high concentrations.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Beta-Amyloid (1-40) (Aβ40) is an aggregation prone protein, which undergoes a nucleation-dependent aggregation process causing the pathological neurodegeneration by amyloid plaque formation implicated in Alzheimer’s disease. In this thesis, we investigated the effects of small molecule modulators extracted from the marine invertebrate Pseudopterogorgia elisabethae on the Aβ40 amyloidogenic process using in- vitro ThT fluorescence assay and atomic force microscopy. We also investigated the effects of neutral and anionic phospholipid liposomes on Aβ40 aggregation. Our results show that a marine natural product Pseudopterosin-A and its derivatives can suppress and modulate the Aβ40 aggregation process. Furthermore, our results demonstrate that a neutral phospholipid liposome inhibits Aβ40 fibril formation, whereas the anionic liposomes promote it.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The pathology of Alzheimer's disease (AD) remains elusive. Competing evidence links amylois \U+fffd\-peptide (A\U+fffd\) amyloid formation to the phenotype of AD (1). The mechanism of amyloid fibril formation has been an ongoing investigation for many years. A\U+fffd\10-23 peptide, a fragment of A\U+fffd\1-42 peptide, contained crucial hydrophobic core residues (2). In this study, an investigation was launched to study the aggreagation process of A\U+fffd\1023 peptide and its ability to form amyloid fibrils. Furthermore, the presence of its hydrophobic core showed importance for its ability to aggregate and form amyloid fibrils. Thereafter, the inhibition of A\U+fffd\1-42 peptide aggregation was studied by using pyrimidine-based compounds. A\U+fffd\1-42 peptides, known to be neurotoxic, aggregate to form amyloid fibrils (3). This investigation may provide insight into the development of novel small molecular candidates to treat AD.