Feeding

Model
Digital Document
Publisher
Florida Atlantic University
Description
Accumulating evidence points to a fundamental connection between sleep and feeding behavior. However, the temporal, genetic, and neuronal architecture that defines these relationships is poorly understood. Drosophila are amenable to high-throughput studies and offer numerous genetic tools which have advanced our understanding of the mechanistic relationships between these behaviors. However, certain features of the sleep-feeding axis have remained elusive, largely due to the separate measurement of sleep and feeding. Here, I develop a system which simultaneously measures sleep and feeding in individual animals by employing high resolution machine vision tracking and micro-controller interface functionality. Using this system, I show that food consumption drives a transient rise in sleep, which depends on food quality, quantity, and timing of a meal. The leucokinin system mediates these effects, particularly in response to protein ingestion. We further use the system to examine sleep homeostasis and demonstrate sleep dependence on energy expenditure and fat-brain communication. Collectively, these findings provide novel insight into the fundamental connections between sleep and feeding behavior.