Model
Digital Document
Publisher
Florida Atlantic University
Description
Calcium carbonate precipitation and formation of clog particles inside the leachate
collection pipe can cause catastrophic failures in landfill operation. This study focuses on
quantifying the effectiveness of electronic scale control to reduce the clog formation within
the pipe network. A field scale model (40ft × 20ft) was constructed, featuring side-by-side
flow of electronically treated and untreated composite leachate. Data obtained in the first
phase of this study indicate that electronic scale control system does not have any
statistically significant effect on water quality parameters. The second phase of this study
identified calcite (CaCO3) to be the predominant phase present in the precipitates using
XRD/XRF diffraction pattern analyzed through a search match calculation program
(MATCH! Version 3.2.0) which concur with the previous studies. Furthermore, Rietveld
refinement using FullProf Suite confirms that there were no differences between the treated
and untreated precipitate based on the phases identified in the respective samples.
collection pipe can cause catastrophic failures in landfill operation. This study focuses on
quantifying the effectiveness of electronic scale control to reduce the clog formation within
the pipe network. A field scale model (40ft × 20ft) was constructed, featuring side-by-side
flow of electronically treated and untreated composite leachate. Data obtained in the first
phase of this study indicate that electronic scale control system does not have any
statistically significant effect on water quality parameters. The second phase of this study
identified calcite (CaCO3) to be the predominant phase present in the precipitates using
XRD/XRF diffraction pattern analyzed through a search match calculation program
(MATCH! Version 3.2.0) which concur with the previous studies. Furthermore, Rietveld
refinement using FullProf Suite confirms that there were no differences between the treated
and untreated precipitate based on the phases identified in the respective samples.
Member of