Carbon composites

Model
Digital Document
Publisher
Florida Atlantic University
Description
Nonlinear finite element analyses of the reinforced rectangular beams, prestressed solid slab and prestressed voided slab retrofitted with CFRP laminates are carried out using the software ANSYS(version 5.0) on the Sunwork station. The computer analyses are based on the proposed stress-strain relationship considering the effects of tensile stress on both elastic modulus and maximum compressive stress of concrete. Several assumptions are made in predicting the loss of tensile strength due to crack, confinement due to the laminate bonding, tensile strength due to the prestress force, failure pattern due to the concentrated stress adjacent to the loading point and concrete crushing due to large compressive strain. A subroutine is developed using macro commands of ANSYS. In this research, Branson's equation or Ie procedure is assumed in the prediction of deflection of retrofitted concrete members. The modifications needed due to laminate bonding are the cracking moments of inertia (Icr) of the beams or slabs bonded with CFRP laminates, which are included in the analysis.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This study presents the experimental and theoretical studies on debond of carbon fiber laminates bonded to concrete, which aids in understanding the mechanics of the repaired damaged prestressed concrete girders with externally bonded carbon plates. The bond strength of carbon plate specimens bonded to concrete is determined experimentally by the debond test. The initial crack is introduced in the specimens at one location, namely the plate/adhesive interface. The fracture toughness for debonding is evaluated and expressed as the critical strain energy release rate. A finite element analysis was performed to evaluate the compliance and stress distribution in the debond test specimens.