Drosophila melanogaster -- Genetics

Model
Digital Document
Publisher
Florida Atlantic University
Description
Aging is a biological process that has many detrimental effects due to the
accumulation of oxidative damage to key biomolecules due to the action of free
radicals. Methionine sulfoxide reductase (Msr) functions to repair oxidative
damage to methionine residues. Msr comes in two forms, MsrA and MsrB, each
form has been shown to reduce a specific enantiomer of bound and free oxidized
methionine. Effects of Msr have yet to be studied in the major developmental
stages of Drosophila melanogaster despite the enzymes elevated expression
during these stages. A developmental timeline was determined for MsrA mutant,
MsrB mutant, and double null mutants against a wild type control. Results show
that the Msr double mutant is delayed approximately 20 hours in the early/mid
third instar stage while each of the single mutants showed no significant difference to the wild type. Data suggests that the reasoning of this phenomenon
is due to an issue gaining mass.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Biological homeostasis relies on protective mechanisms that respond to cellular oxidation caused primarily by free radical reactions. Methionine sulfoxide reductases (Msr) are a class of enzymes that reverse oxidative damage to methionine in proteins. The focus of this study is on the relationship between Msr and dopamine levels in Drosophila. Dopaminergic neurons in Drosophila have comparable roles to those found in humans. A deficit in dopamine leads to the onset of many neurological disorders including the loss of fine motor control—a neurodegenerative condition characteristic of Parkinson’s disease (PD). We found that dopamine levels in the heads of MsrAΔ/ΔBΔ/Δ mutants are significantly reduced in comparison to MsrA ⁺/⁺ B⁺/⁺ heads. In addition, wefound protein and expression levels are markedly reduced in an Msr-deficient system. Our findings suggest an important role for the Msr system in the CNS.